如圖,在等邊△ABC中,點(diǎn)D、E分別在BC、AB上,AD與CE交于F,且BD=AE.則∠DFC=
60
60
度.
分析:因?yàn)椤鰽BC為等邊三角形,所以∠BAC=∠B=∠ACB=60°,AB=BC=AC,根據(jù)SAS易證△ABD≌△CAE,則∠BAD=∠ACE,再根據(jù)三角形內(nèi)角和定理求得∠DFC的度數(shù).
解答:解:∵△ABC為等邊三角形,
∴∠BAC=∠B=∠ACB=60°,
∴AB=BC=AC.
在△ABD和△CAE中,
∵BD=AE,∠ABD=∠CAE,AB=AC,
∴△ABD≌△CAE,
∴∠BAD=∠ACE,
又∵∠BAD+∠DAC=∠BAC=60°,
∴∠ACE+∠DAC=60°,
∵∠ACE+∠DAC+∠AFC=180°,
∴∠AFC=120°,
∵∠AFC+∠DFC=180°,
∴∠DFC=60°.
故答案為:60.
點(diǎn)評(píng):本題考查了全等三角形的判定、等邊三角形性質(zhì)、三角形內(nèi)角和定理及外角的性質(zhì),綜合性強(qiáng),考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說(shuō)明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長(zhǎng);
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案