如圖1,在正方形ABCD中,E、F分別是BC,CD上的點(diǎn),且∠EAF=45度.則有結(jié)論EF=BE+FD成立;
(1)如圖2,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是BC,CD上的點(diǎn),且∠EAF是∠BAD的一半,那么結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)說(shuō)明理由.
(2)若將(1)中的條件改為:在四邊形ABCD中,AB=AD,∠B+∠D=180°,延長(zhǎng)BC到點(diǎn)E,延長(zhǎng)CD到點(diǎn)F,使得∠EAF仍然是∠BAD的一半,則結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)寫(xiě)出它們的數(shù)量關(guān)系并證明.
【答案】分析:(1)結(jié)論仍然成立.延長(zhǎng)CB到G,使BG=FD,根據(jù)已知條件容易證明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠DAF+∠BAE=∠EAF,進(jìn)一步得到∠EAF=∠GAE,現(xiàn)在可以證明△AEF≌△AEG,然后根據(jù)全等三角形的性質(zhì)就可以證明結(jié)論成立;
(2)結(jié)論不成立,應(yīng)為EF=BE-DF,如圖在CB上截取BG=FD,由于∠B+∠ADC=180°,∠ADF+∠ADC=180°,可以得到∠B=∠ADF,再利用已知條件可以證明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠EAF=∠GAE,現(xiàn)在可以證明△AEF≌△AEG,再根據(jù)全等三角形的性質(zhì)就可以證明EF=EG=EB-BG=EB-DF.
解答:解:(1)延長(zhǎng)CB到G,使BG=FD,連接AG,
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF=∠BAD,
∴∠DAF+∠BAE=∠EAF,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB+BG=EB+DF.

(2)結(jié)論不成立,應(yīng)為EF=BE-DF,
證明:在BE上截取BG,使BG=DF,連接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF.
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD
=∠EAF=
1
2
∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF.
∴EG=EF
∵EG=BE-BG
∴EF=BE-FD.
點(diǎn)評(píng):此題是開(kāi)放性試題,首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對(duì)學(xué)生的分析問(wèn)題,解決問(wèn)題的能力要求比較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對(duì)角線AC,并把正方形OFGE繞頂點(diǎn)A沿逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為а.
(1)如圖②,當(dāng)а=90°時(shí),請(qǐng)直接寫(xiě)出線段DE與BF的數(shù)量關(guān)系和位置關(guān)系;
(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明.若發(fā)生改變,請(qǐng)舉例說(shuō)明;
(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明.若發(fā)生改變,請(qǐng)寫(xiě)出改變后的新結(jié)論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)填空:如圖1,在正方形PQRS中,已知點(diǎn)M、N分別在邊QR、RS上,且QM=RN,連接PN、SM相交于點(diǎn)O,則∠POM=
 
度;
(2)如圖2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此為部分條件,精英家教網(wǎng)構(gòu)造一個(gè)與上述命題類似的正確命題并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖1,在正方形ABCD中,若點(diǎn)E是△DBC內(nèi)的一點(diǎn),且DE=DC,BE=CE.
(1)連接AE.說(shuō)明△ABE≌△DCE的理由;
(2)求∠BDE與∠CDE度數(shù)的比值;
(3)拓展探索:若只將題中的條件“正方形ABCD”換成條件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如圖2,研究∠BDE與∠CDE度數(shù)的比值是否與(2)中的結(jié)論相同,寫(xiě)出你的研究結(jié)果并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+
1
2
AC=AB;
(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B重合),同時(shí)點(diǎn)A1從點(diǎn)A出發(fā),沿著B(niǎo)A的延長(zhǎng)線運(yùn)動(dòng),點(diǎn)C1與A1的運(yùn)動(dòng)速度相同,當(dāng)動(dòng)點(diǎn)C1停止運(yùn)動(dòng)時(shí),另一動(dòng)點(diǎn)A1也隨之停止運(yùn)動(dòng).如圖2,A1F1平分∠BA1C1,交BD于點(diǎn)F1,過(guò)點(diǎn)F1作F1E1⊥A1C1,垂足為E1,請(qǐng)猜想E1F1
1
2
A1C1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A1E1=3,C1E1=2時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

課本練習(xí)拓展:
(1)如圖1,在正方形ABCD中,E是BC上的一點(diǎn),△ABE經(jīng)過(guò)旋轉(zhuǎn)后得到△ADF,
①旋轉(zhuǎn)中心是點(diǎn)
A
A
;旋轉(zhuǎn)角度最少是
90
90
度.
②愛(ài)動(dòng)腦筋的小兵,在CD邊上取點(diǎn)H使得∠HAE=45°,他發(fā)現(xiàn):HE=BE+HD,他的發(fā)現(xiàn)正確嗎?請(qǐng)你判斷并說(shuō)明理由.
(2)思維闖關(guān):
如圖2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一點(diǎn),且∠DCE=45°,BE=2,則DE的長(zhǎng)=
5
5
.(小兵運(yùn)用解答(1)中所積累的經(jīng)驗(yàn)和知識(shí)做出了該題)
(3)動(dòng)手闖過(guò):
①小明有一塊如圖3所示的紙片,其中∠A=∠C=90°,AB=AD.小明請(qǐng)小兵只剪一刀后把它拼成正方形,請(qǐng)你幫助小兵在圖中畫(huà)出剪拼得示意圖.
②小兵好朋友小紅現(xiàn)有兩塊同小明一樣的紙片,如圖4,小兵能否在每塊上各剪一刀,然后拼成一個(gè)大的正方形?若能,請(qǐng)你畫(huà)出剪法和拼法的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案