(2005•遼寧)如圖,小明家有一塊長150cm,寬100cm的矩形地毯,為了使地毯美觀,小明請來工匠在地毯的四周鑲上寬度相同的花色地毯,鑲完后地毯的面積是原地毯面積的2倍.若設(shè)花色地毯的寬為xcm,則根據(jù)題意列方程為    .(化簡為一般式)
【答案】分析:如果設(shè)花色地毯的寬為xcm,則鑲完后地毯的長是(150+2x)cm,寬是(100+2x)cm,則面積是(150+2x)(100+2x)cm2,原地毯的面積是150×100cm2,根據(jù)“鑲完后地毯的面積是原地毯面積的2倍”,即可列出方程.
解答:解:設(shè)花色地毯的寬為xcm,
那么地毯的面積=(150+2x)(100+2x)
鑲完后地毯的面積是原地毯面積的2倍,
所以,可得出(150+2x)(100+2x)=2×150×100
即:x2+125x-3750=0.
點評:解決本題的關(guān)鍵是能根據(jù)鑲完后地毯的面積是原地毯面積的2倍,列出相等關(guān)系,用代數(shù)式正確表示出鑲完后地毯的面積.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(16)(解析版) 題型:解答題

(2005•遼寧)如圖,⊙C經(jīng)過坐標原點O,分別交x軸正半軸、y軸正半軸于點B、A,點B的坐標為(4,0),點M在⊙C上,并且∠BMO=120度.
(1)求直線AB的解析式;
(2)若點P是⊙C上的點,過點P作⊙C的切線PN,若∠NPB=30°,求點P的坐標;
(3)若點D是⊙C上任意一點,以B為圓心,BD為半徑作⊙B,并且BD的長為正整數(shù).
①問這樣的圓有幾個?它們與⊙C有怎樣的位置關(guān)系?
②在這些圓中,是否存在與⊙C所交的。ㄖ浮袯上的一條。90°的弧,若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•遼寧)如圖,拋物線y=ax2+bx+c經(jīng)過A(-3,0),B(1,0),C(3,6)三點,且與y軸交于點E.(1)求拋物線的解析式;
(2)若點F的坐標為(0,-),直線BF交拋物線于另一點P,試比較△AFO與△PEF的周長的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2005•遼寧)如圖,⊙C經(jīng)過坐標原點O,分別交x軸正半軸、y軸正半軸于點B、A,點B的坐標為(4,0),點M在⊙C上,并且∠BMO=120度.
(1)求直線AB的解析式;
(2)若點P是⊙C上的點,過點P作⊙C的切線PN,若∠NPB=30°,求點P的坐標;
(3)若點D是⊙C上任意一點,以B為圓心,BD為半徑作⊙B,并且BD的長為正整數(shù).
①問這樣的圓有幾個?它們與⊙C有怎樣的位置關(guān)系?
②在這些圓中,是否存在與⊙C所交的。ㄖ浮袯上的一條。90°的弧,若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年遼寧省十一市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•遼寧)如圖,⊙C經(jīng)過坐標原點O,分別交x軸正半軸、y軸正半軸于點B、A,點B的坐標為(4,0),點M在⊙C上,并且∠BMO=120度.
(1)求直線AB的解析式;
(2)若點P是⊙C上的點,過點P作⊙C的切線PN,若∠NPB=30°,求點P的坐標;
(3)若點D是⊙C上任意一點,以B為圓心,BD為半徑作⊙B,并且BD的長為正整數(shù).
①問這樣的圓有幾個?它們與⊙C有怎樣的位置關(guān)系?
②在這些圓中,是否存在與⊙C所交的。ㄖ浮袯上的一條。90°的弧,若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年遼寧省十一市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•遼寧)如圖,拋物線y=ax2+bx+c經(jīng)過A(-3,0),B(1,0),C(3,6)三點,且與y軸交于點E.(1)求拋物線的解析式;
(2)若點F的坐標為(0,-),直線BF交拋物線于另一點P,試比較△AFO與△PEF的周長的大小,并說明理由.

查看答案和解析>>

同步練習冊答案