【題目】如圖,拋物線y= x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.
(1)求拋物線的解析式及點D的坐標;
(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;
(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ= MN時,求菱形對角線MN的長.
【答案】
(1)
解:∵OB=OC=6,
∴B(6,0),C(0,﹣6),
∴ ,解得 ,
∴拋物線解析式為y= x2﹣2x﹣6,
∵y= x2﹣2x﹣6= (x﹣2)2﹣8,
∴點D的坐標為(2,﹣8);
(2)
解:如圖1,過F作FG⊥x軸于點G,
設F(x, x2﹣2x﹣6),則FG=| x2﹣2x﹣6|,
在y= x2﹣2x﹣6中,令y=0可得 x2﹣2x﹣6=0,解得x=﹣2或x=6,
∴A(﹣2,0),
∴OA=2,則AG=x+2,
∵B(6,0),D(2,﹣8),
∴BE=6﹣2=4,DE=8,
當∠FAB=∠EDB時,且∠FGA=∠BED,
∴△FAG∽△BDE,
∴ = ,即 = = ,
當點F在x軸上方時,則有 = ,解得x=﹣2(舍去)或x=7,此進F點坐標為(7, );
當點F在x軸上方時,則有 =﹣ ,解得x=﹣2(舍去)或x=5,此進F點坐標為(5,﹣ );
綜上可知F點的坐標為(7, )或(5,﹣ );
(3)
解:∵點P在x軸上,
∴由菱形的對稱性可知P(2,0),
如圖2,當MN在x軸上方時,設T為菱形對角線的交點,
∵PQ= MN,
∴MT=2PT,
設PT=n,則MT=2n,
∴M(2+2n,n),
∵M在拋物線上,
∴n= (2+2n)2﹣2(2+2n)﹣6,解得n= 或n= ,
∴MN=2MT=4n= +1;
當MN在x軸下方時,同理可設PT=n,則M(2+2n,﹣n),
∴﹣n= (2+2n)2﹣2(2+2n)﹣6,解得n= 或n= (舍去),
∴MN=2MT=4n= ﹣1;
綜上可知菱形對角線MN的長為 +1或 ﹣1.
【解析】(1)由條件可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式,進一步可求得D點坐標;(2)過F作FG⊥x軸于點G,可設出F點坐標,利用△FAG∽△BDE,由相似三角形的性質可得到關于F點坐標的方程,可求得F點的坐標;(3)可求得P點坐標,設T為菱形對角線的交點,設出PT的長為n,從而可表示出M點的坐標,代入拋物線解析式可得到n的方程,可求得n的值,從而可求得MN的長.
【考點精析】認真審題,首先需要了解相似三角形的性質(對應角相等,對應邊成比例的兩個三角形叫做相似三角形).
科目:初中數(shù)學 來源: 題型:
【題目】CPI指居民消費價格指數(shù),反映居民家庭購買消費商品及服務的價格水平的變動情況.CPI的漲跌率在一定程度受到季節(jié)性因素和天氣因素的影響.根據(jù)北京市2015年與2016年CPI漲跌率的統(tǒng)計圖中的信息,請判斷2015年1~8月份與2016年1~8月份,同月份比較CPI漲跌率下降最多的月份是月;請根據(jù)圖中提供的信息,預估北京市2016年第四季度CPI漲跌率變化趨勢是 , 你的預估理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.
(1)直接寫出甲投放的垃圾恰好是A類的概率;
(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉,使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F(xiàn),DF與AC交于點M,DE與BC交于點N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點D旋轉的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關系,并說明理由;
②若CE=4,CF=2,求DN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學生進行問卷調查,根據(jù)調查結果繪制了如圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)補全條形統(tǒng)計圖,“體育”對應扇形的圓心角是度;
(2)根據(jù)以上統(tǒng)計分析,估計該校2000名學生中喜愛“娛樂”的有人;
(3)在此次問卷調查中,甲、乙兩班分別有2人喜愛新聞節(jié)目,若從這4人中隨機抽取2人去參加“新聞小記者”培訓,請用列表法或畫樹狀圖的方法求所抽取的2人來自不同班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.
(1)在圖中畫出以AB為底、面積為12的等腰△ABC,且點C在小正方形的頂點上;
(2)在圖中畫出平行四邊形ABDE,且點D和點E均在小正方形的頂點上,tan∠EAB= ,連接CD,請直接寫出線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的頂點A,B在函數(shù)y= (x>0)的圖象上,點C,D分別在x軸,y軸的正半軸上,當k的值改變時,正方形ABCD的大小也隨之改變.
①當k=2時,正方形A′B′C′D′的邊長等于 .
②當變化的正方形ABCD與(1)中的正方形A′B′C′D′有重疊部分時,k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠加工一批零件,為了提高工人工作積極性,工廠規(guī)定每名工人每次薪金如下:生產(chǎn)的零件不超過a件,則每件3元,超過a件,超過部分每件b元,如圖是一名工人一天獲得薪金y(元)與其生產(chǎn)的件數(shù)x(件)之間的函數(shù)關系式,則下列結論錯誤的是( )
A.a=20
B.b=4
C.若工人甲一天獲得薪金180元,則他共生產(chǎn)50件
D.若工人乙一天生產(chǎn)m(件),則他獲得薪金4m元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為邊在AD的上邊作正方形ADEF,連接CF.
(1)觀察猜想:如圖1,當點D在線段BC上時,①BC與CF的位置關系為:;②BC、CD、CF之間的數(shù)量關系為: .
(2)數(shù)學思考:如圖2,當點D在線段CB的延長線上時,以上①②關系是否成立,請在后面的橫線上寫出正確的結論.①BC與CF的位置關系為:;②BC、CD、CF之間的數(shù)量關系為: .
(3)如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GD,若已知AB=2 ,CD= BC,請求出DG的長(寫出求解過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com