如圖,你能在圖中找出一點(diǎn)P,使點(diǎn)P到點(diǎn)A、B、C、D四點(diǎn)的距離之和最小嗎?如果能,請(qǐng)畫出點(diǎn)P.

答案:
解析:

能,連結(jié)AC、BD交于點(diǎn)0,0點(diǎn)即為所求.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•杭州)如圖,AE切⊙O于點(diǎn)E,AT交⊙O于點(diǎn)M,N,線段OE交AT于點(diǎn)C,OB⊥AT于點(diǎn)B,已知∠EAT=30°,AE=3
3
,MN=2
22

(1)求∠COB的度數(shù);
(2)求⊙O的半徑R;
(3)點(diǎn)F在⊙O上(
FME
是劣。,且EF=5,把△OBC經(jīng)過(guò)平移、旋轉(zhuǎn)和相似變換后,使它的兩個(gè)頂點(diǎn)分別與點(diǎn)E,F(xiàn)重合.在EF的同一側(cè),這樣的三角形共有多少個(gè)?你能在其中找出另一個(gè)頂點(diǎn)在⊙O上的三角形嗎?請(qǐng)?jiān)趫D中畫出這個(gè)三角形,并求出這個(gè)三角形與△OBC的周長(zhǎng)之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(1)完成下面的證明:
已知:如圖1,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD.
求證:∠EGF=90°.
證明:∵HG∥AB,(已知) 
∴∠1=∠3. (
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
兩直線平行,同旁內(nèi)角互補(bǔ)
兩直線平行,同旁內(nèi)角互補(bǔ)

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分線定義
角平分線定義

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分線定義
角平分線定義

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代換
等量代換
).即∠EGF=90°.
(2)如圖2,已知∠ACB=90°,那么∠A的余角是哪個(gè)角呢?答:
∠B
∠B
;
小明用三角尺在這個(gè)三角形中畫了一條高CD(點(diǎn)D是垂足),得到圖3,
①請(qǐng)你幫小明在圖中畫出這條高;
②在圖中,小明通過(guò)仔細(xì)觀察、認(rèn)真思考,找出了三對(duì)余角,你能幫小明把它們寫出來(lái)嗎?答:a
∠ACD與∠BCD
∠ACD與∠BCD
;b
∠A與∠ACD
∠A與∠ACD
;c
∠B與∠BCD
∠B與∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明還發(fā)現(xiàn)了另外兩對(duì)相等的角,請(qǐng)你也仔細(xì)地觀察、認(rèn)真地思考分析,試一試,能發(fā)現(xiàn)嗎?把它們寫出來(lái),并請(qǐng)說(shuō)明理由.
(3)在直角坐標(biāo)系中,第一次將△OAB變換成OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標(biāo)為
(16,3)
(16,3)
,B4的坐標(biāo)為
(32,0)
(32,0)

②按以上規(guī)律將△OAB進(jìn)行n次變換得到△AnBn,則可知An的坐標(biāo)為
(2n,3)
(2n,3)
,Bn的坐標(biāo)為
(2n+1,0)
(2n+1,0)

③可發(fā)現(xiàn)變換的過(guò)程中A、A1、A2、…、An縱坐標(biāo)均為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年浙江省杭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,AE切⊙O于點(diǎn)E,AT交⊙O于點(diǎn)M,N,線段OE交AT于點(diǎn)C,OB⊥AT于點(diǎn)B,已知∠EAT=30°,AE=3,MN=2
(1)求∠COB的度數(shù);
(2)求⊙O的半徑R;
(3)點(diǎn)F在⊙O上(是劣。褽F=5,把△OBC經(jīng)過(guò)平移、旋轉(zhuǎn)和相似變換后,使它的兩個(gè)頂點(diǎn)分別與點(diǎn)E,F(xiàn)重合.在EF的同一側(cè),這樣的三角形共有多少個(gè)?你能在其中找出另一個(gè)頂點(diǎn)在⊙O上的三角形嗎?請(qǐng)?jiān)趫D中畫出這個(gè)三角形,并求出這個(gè)三角形與△OBC的周長(zhǎng)之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

如圖,你能在圖中找出一點(diǎn)P,使點(diǎn)P到點(diǎn)A、B、C、D四點(diǎn)的距離之和最小嗎?如果能,請(qǐng)畫出點(diǎn)P。

查看答案和解析>>

同步練習(xí)冊(cè)答案