如圖1,在△ABC中,D、E、F分別為三邊的中點(diǎn),G點(diǎn)在邊AB上,△BDG與四邊形ACDG的周長(zhǎng)相等,設(shè)BC=a、AC=b、AB=c.
(1)求線段BG的長(zhǎng);
(2)求證:DG平分∠EDF;
(3)連接CG,如圖2,若△BDG與△DFG相似,求證:BG⊥CG.

【答案】分析:(1)由△BDG與四邊形ACDG的周長(zhǎng)相等與BD=CD,易得BG=AC+AG,即可得BG=BG=(AB+AC);
(2)由點(diǎn)D、F分別是BC、AB的中點(diǎn),利用三角形中位線的性質(zhì),易得DF=AC=b,由FG=BG-BF,求得DF=FG,又由DE∥AB,即可求得∠FDG=∠EDG;
(3)由△BDG與△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),可得∠B=∠FDG,又由(2)得:∠FGD=∠FDG,易證得DG=BD=CD,可得B、G、C三點(diǎn)在以BC為直徑的圓周上,由圓周角定理,即可得BG⊥CG.
解答:(1)解:∵△BDG與四邊形ACDG的周長(zhǎng)相等,
∴BD+BG+DG=AC+CD+DG+AG,
∵D是BC的中點(diǎn),
∴BD=CD,
∴BG=AC+AG,
∵BG+(AC+AG)=AB+AC,
∴BG=(AB+AC)=(b+c);

(2)證明:∵點(diǎn)D、F分別是BC、AB的中點(diǎn),
∴DF=AC=b,BF=AB=c,
又∵FG=BG-BF=(b+c)-c=b,
∴DF=FG,
∴∠FDG=∠FGD,
∵點(diǎn)D、E分別是BC、AC的中點(diǎn),
∴DE∥AB,
∴∠EDG=∠FGD,
∴∠FDG=∠EDG,
即DG平分∠EDF;

(3)證明:∵△BDG與△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),
∴∠B=∠FDG,
由(2)得:∠FGD=∠FDG,
∴∠FGD=∠B,
∴DG=BD,
∵BD=CD,
∴DG=BD=CD,
∴B、G、C三點(diǎn)在以BC為直徑的圓周上,
∴∠BGC=90°,
即BG⊥CG.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、三角形中位線的性質(zhì)、等腰三角形的性質(zhì)以及圓周角定理等知識(shí).此題綜合性較強(qiáng),難度較大,注意數(shù)形結(jié)合思想與整體思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問題:
(1)寫出一個(gè)你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2

(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案