【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點A(m,3),B(-6,n),與x軸交于點C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標(直接寫出結果).
【答案】(1)y=x+2;(2)點P的坐標為(-6,0)或(-2,0).
【解析】
(1)利用反比例函數(shù)圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數(shù)法即可求出直線AB的解析式;
(2)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據(jù)三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=2,解之即可得出結論.
(1)∵點A(m,3),B(-6,n)在雙曲線y=上,
∴m=2,n=-1,
∴A(2,3),B(-6,-1).
將(2,3),B(-6,-1)帶入y=kx+b,
得:,解得,.
∴直線的解析式為y=x+2.
(2)當y=x+2=0時,x=-4,
∴點C(-4,0).
設點P的坐標為(x,0),如圖,
∵S△ACP=S△BOC,A(2,3),B(-6,-1),
∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=2,
解得:x1=-6,x2=-2.
∴點P的坐標為(-6,0)或(-2,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,CD∥AB,AD=BC.已知A(﹣2,0),B(6,0),D(0,3),函數(shù)y=(x>0)的圖象G經(jīng)過點C.
(1)求點C的坐標和函數(shù)y=(x>0)的表達式;
(2)將四邊形ABCD向上平移2個單位得到四邊形A'B'C'D',問點B'是否落在圖象G上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQ與BC交于點G,則△EBG的周長是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D、E分別是⊙O兩條半徑OA、OB的中點, .
(1)求證:CD=CE.
(2)若∠AOB=120°,OA=x,四邊形ODCE的面積為y,求y與x的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點,與y軸交于點C,點D為拋物線的頂點,點P為第一象限拋物線上一點,且∠DAP=45°,則點P的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+4x-.
(1)用配方法把該函數(shù)解析式化為y=a(x﹣h)2+k的形式,并指出函數(shù)圖象的對稱軸和頂點坐標;
(2)求函數(shù)圖象與x軸的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.
(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC = 90°,BC = 1,AC =.
(1)以點B為旋轉中心,將△ABC沿逆時針方向旋轉90°得到△A′BC′,請畫出變換后的圖形;
(2)求點A和點A′之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,有兩個△ABC和△A′B′C′,其中∠C+∠C′=180°,且兩個三角形不相似.能否分別用一條直線分割這兩個三角形,使△ABC所分割成的兩個三角形與△A′B′C′所分割成的兩個三角形分別相似?如果能,畫出分割線,并標明相等的角;如果不能,請說明理由.
小明經(jīng)過思考后,嘗試從特殊情況入手,畫出了當∠C=∠C′=90°時的分割線:
(1)小明在完成畫圖后給出了如下證明思路,請補全他的證明思路.
由畫圖可得△BCD∽△ .
由∠A+∠B=90°,∠A′C′D′+∠B′C′D′=90°,∠A′C′D′=∠B,得 .
同理可得:∠B′=∠ACD.
由此得:△ACD∽△ .
(2)當∠C>∠C′時,請在圖①的兩個三角形中分別畫出滿足題意的分割線,并標明相等的角.(不寫畫法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com