(1998•溫州)如圖,過⊙O的直徑AB上兩點(diǎn)M,N,分別作弦CD,EF,若CD∥EF,AC=BF.
求證:(1)弧BEC=弧ADF;(2)AM=BN.
【答案】分析:(1)要證弧BEC=弧ADF,須證∠BFC=∠ACF;
(2)要證AM=BN,須證△ACM≌△BFN.
解答:證明:(1)連接OC、OF,
∴OC=OF,OA=OB.
∵AC=BF,
∴△COA≌△FOB.
∴∠CAO=∠OBF,∠ACO=∠BFO.
∴AC∥BF.
連接CF,則∠BFC=∠ACF,
∴弧BEC=弧ADF.

(2)∵AC∥BF,
∴∠BFC=∠ACF.
∵CD∥EF,
∴∠EFC=∠DCF.
∴∠ACM=∠BFN.
又CD∥EF,
∴∠CMA=∠BNF.
∵AC=BF,
∴△ACM≌△BFN.
∴AM=BN.
點(diǎn)評(píng):此題主要考查同弧所對(duì)的圓周角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1998年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:解答題

(1998•溫州)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C(0,2).
(1)請(qǐng)說明a、b、c的乘積是正數(shù)還是負(fù)數(shù);
(2)若∠OCA=∠CBO,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•溫州)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C(0,2).
(1)請(qǐng)說明a、b、c的乘積是正數(shù)還是負(fù)數(shù);
(2)若∠OCA=∠CBO,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年浙江省溫州市中考數(shù)學(xué)試卷 題型:解答題

(1998•溫州)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C(0,2).
(1)請(qǐng)說明a、b、c的乘積是正數(shù)還是負(fù)數(shù);
(2)若∠OCA=∠CBO,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國(guó)中考數(shù)學(xué)試題匯編《圓》(02)(解析版) 題型:解答題

(1998•溫州)如圖,過⊙O的直徑AB上兩點(diǎn)M,N,分別作弦CD,EF,若CD∥EF,AC=BF.
求證:(1)弧BEC=弧ADF;(2)AM=BN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(02)(解析版) 題型:解答題

(1998•溫州)如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M是OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,設(shè)DE=,EM=x.
(1)用含x和a的代數(shù)式表示MC的長(zhǎng),并求證:
(2)當(dāng)a=15,且EM>MC時(shí),求sin∠EOM的值;
(3)根據(jù)圖形寫出EM的長(zhǎng)的取值范圍.試問:在弧DB上是否存在一點(diǎn)E,使EM的長(zhǎng)是關(guān)于x的方程的相等實(shí)數(shù)根?如果存在,求出sin∠EOM的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案