若第二象限內(nèi)的點P(x,y)滿足|x|=3,y2=25,則點P的坐標是 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


晚飯后,小聰和小軍在社區(qū)廣場散步,小聰問小軍:“你有多高?”小軍一時語塞.小聰思考片刻,提議用廣場照明燈下的影長及地磚長來測量小軍的身高.于是,兩人在燈下沿直線NQ移動,如圖,當(dāng)小聰正好站在廣場的A點(距N點5塊地磚長)時,其影長AD恰好為1塊地磚長;當(dāng)小軍正好站在廣場的B點(距N點9塊地磚長)時,其影長BF恰好為2塊地磚長.已知廣場地面由邊長為0.8米的正方形地磚鋪成,小聰?shù)纳砀逜C為1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.請你根據(jù)以上信息,求出小軍身高BE的長.(結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


我國古代秦漢時期有一部數(shù)學(xué)著作,堪稱是世界數(shù)學(xué)經(jīng)典名著.它的出現(xiàn),標志著我國古代數(shù)學(xué)體系的正式確立.它采用按類分章的問題集的形式進行編排.其中方程的解法和正負數(shù)加減運算法則在世界上遙遙領(lǐng)先,這部著作的名稱是(  )

 

A.

《九章算術(shù)》

B.

《海島算經(jīng)》

C.

《孫子算經(jīng)》

D.

《五經(jīng)算術(shù)》

 

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


綜合與探究

如圖1,在平面直角坐標系xOy中,拋物線W的函數(shù)表達式為y=﹣x2+x+4.拋物線W與x軸交于A,B兩點(點B在點A的右側(cè),與y軸交于點C,它的對稱軸與x軸交于點D,直線l經(jīng)過C、D兩點.

(1)求A、B兩點的坐標及直線l的函數(shù)表達式.

(2)將拋物線W沿x軸向右平移得到拋物線W′,設(shè)拋物線W′的對稱軸與直線l交于點F,當(dāng)△ACF為直角三角形時,求點F的坐標,并直接寫出此時拋物線W′的函數(shù)表達式.

(3)如圖2,連接AC,CB,將△ACD沿x軸向右平移m個單位(0<m≤5),得到△A′C′D′.設(shè)A′C交直線l于點M,C′D′交CB于點N,連接CC′,MN.求四邊形CMNC′的面積(用含m的代數(shù)式表示).

 

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列說法正確的是( 。

 

A.

為了解我國中學(xué)生的體能情況,應(yīng)采用普查的方式

 

B.

若甲隊成績的方差是2,乙隊成績的方差是3,說明甲隊成績比乙隊成績穩(wěn)定

 

C.

明天下雨的概率是99%,說明明天一定會下雨

 

D.

一組數(shù)據(jù)4,6,7,6,7,8,9的中位數(shù)和眾數(shù)都是6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


先化簡:()÷,然后解答下列問題:

(1)當(dāng)x=3時,求原代數(shù)式的值;

(2)原代數(shù)式的值能等于﹣1嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線y=(x+2)(x﹣m)(m>0)與x軸相交于點A、B,與y軸相交于點C,且點A在點B的左側(cè).

(1)若拋物線過點G(2,2),求實數(shù)m的值;

(2)在(1)的條件下,解答下列問題:

①求出△ABC的面積;

②在拋物線的對稱軸上找一點H,使AH+CH最小,并求出點H的坐標;

(3)在第四現(xiàn)象內(nèi),拋物線上是否存在點M,使得以點A、B、M為頂點的三角形與△ACB相似?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計算:(﹣1)2015+20150+21﹣||

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,BCAE于點C,CDAB,∠B=40°,則∠ECD的度數(shù)是

A.70°  B.60°  C.50°  D.40°

查看答案和解析>>

同步練習(xí)冊答案