(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動點(diǎn)P從點(diǎn)O出發(fā),以5cm/s的速度沿x軸勻速向點(diǎn)C運(yùn)動,到達(dá)點(diǎn)C即停止.設(shè)點(diǎn)P運(yùn)動的時間為ts.
(1)過點(diǎn)P作對角線OB的垂線,垂足為點(diǎn)T.求PT的長y與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)在點(diǎn)P運(yùn)動過程中,當(dāng)點(diǎn)O關(guān)于直線AP的對稱點(diǎn)O'恰好落在對角線OB上時,求此時直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點(diǎn)為頂點(diǎn)的△APT的面積能否達(dá)到矩形OABC面積的?請說明理由.

【答案】分析:(1)根據(jù)矩形的性質(zhì)可知OB=AC,根據(jù)直角三角形的性質(zhì)可知=100,即OB=AC=100.判定Rt△OPT∽Rt△OBC則可得出,即可得出函數(shù)解析式,根據(jù)P的運(yùn)動情況求出t的取值范圍即可.
(2)當(dāng)O點(diǎn)關(guān)于直線AP的對稱點(diǎn)O′恰好在對角線OB上時,A,T,P三點(diǎn)在一條直線上.判定Rt△AOP∽Rt△OCB,則可得出,點(diǎn)P的坐標(biāo)為(45,0).列出AP的函數(shù)解析式將點(diǎn)A(0,60)和點(diǎn)P(45,0)代入解析式,解出即可.
(3)由(2)知,當(dāng)t=9時,A,T,P三點(diǎn)在一條直線上,此時點(diǎn)A,T,P不構(gòu)成三角形.所以分兩種情況:1、當(dāng)0<t<9時,列出方程求解看有無實(shí)數(shù)根即可.2、當(dāng)9<t≤16時,根據(jù)圖(3)列出方程求解看有無實(shí)數(shù)根即可.
解答:解:(1)在矩形OABC中,
因?yàn)镺A=60,OC=80,
所以O(shè)B=AC==100.
因?yàn)镻T⊥OB,
所以Rt△OPT∽Rt△OBC.
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/czsx/web/STSource/20131021231655334580633/SYS201310212316553345806016_DA/4.png">,即,
所以y=PT=3t.
當(dāng)點(diǎn)P運(yùn)動到C點(diǎn)時即停止運(yùn)動,此時t的最大值為

(2)(如圖2)當(dāng)O點(diǎn)關(guān)于直線AP的對稱點(diǎn)O'恰好在對角線OB上時,A,T,P三點(diǎn)在
一條直線上.
所以AP⊥OB,∠1=∠2.
所以Rt△AOP∽Rt△OCB,
所以
所以O(shè)P=45.
所以點(diǎn)P的坐標(biāo)為(45,0).
設(shè)直線AP的函數(shù)解析式為y=kx+b.
將點(diǎn)A(0,60)和點(diǎn)P(45,0)代入解析式,
,
解這個方程組得
所以此時直線AP的函數(shù)解析式是

(3)由(2)知,當(dāng)時,A,T,P三點(diǎn)在一條直線上,此時點(diǎn)A,T,P不構(gòu)
成三角形.
所以分兩種情況:
1、當(dāng)0<t<9時,點(diǎn)T位于△AOP的內(nèi)部(如圖1),過A點(diǎn)作AE⊥OB,垂足為點(diǎn)E,
由AO•AB=OB•AE可得AE=48.
所以S△APT=S△AOP-S△ATO-S△OTP=×60×5t-×4t×48-×4t×3t=-6t2+54t.
若S△APT=S矩形OABC,
則-6t2+54t=1200,即t2-9t+200=0.
此時,△=(-9)2-4×1×200<0,
所以該方程無實(shí)數(shù)根.
所以當(dāng)0<t<9時,以A,P,T為頂點(diǎn)的△APT的面積不能達(dá)到矩形OABC面積的
2、當(dāng)9<t≤16時,點(diǎn)T位于△AOP的外部.
此時S△APT=S△ATO+S△OTP-S△AOP=6t2-54t.
若S△APT=S矩OABC
則6t2-54t=1200,即t2-9t-200=0.
解得(舍去).
由于881>625=252,
所以
而此時9<t≤16,
所以也不符合題意,應(yīng)舍去.
所以當(dāng)9<t≤16時,以A,P,T為頂點(diǎn)的△APT的面積也不能達(dá)到矩形OABC面積的
綜上所述,以A,P,T為頂點(diǎn)的△APT的面積不能達(dá)到矩形OABC面積的

點(diǎn)評:本題要注意利用待定系數(shù)法求一次函數(shù)解析式的方法,列出方程,得出未知數(shù).同學(xué)們需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動點(diǎn)P從點(diǎn)O出發(fā),以5cm/s的速度沿x軸勻速向點(diǎn)C運(yùn)動,到達(dá)點(diǎn)C即停止.設(shè)點(diǎn)P運(yùn)動的時間為ts.
(1)過點(diǎn)P作對角線OB的垂線,垂足為點(diǎn)T.求PT的長y與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)在點(diǎn)P運(yùn)動過程中,當(dāng)點(diǎn)O關(guān)于直線AP的對稱點(diǎn)O'恰好落在對角線OB上時,求此時直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點(diǎn)為頂點(diǎn)的△APT的面積能否達(dá)到矩形OABC面積的?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2007•連云港)如圖,在△ABC中,AB=AC=2,∠BAC=20°.動點(diǎn)P、Q分別在直線BC上運(yùn)動,且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補(bǔ)貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市十六中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補(bǔ)貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

同步練習(xí)冊答案