(2013•鹽城)如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
分析:(1)根據(jù)平行四邊形的對(duì)邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AEB=∠EAD,根據(jù)等邊對(duì)等角可得∠ABE=∠AEB,即可得證;
(2)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對(duì)等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.
解答:證明:(1)在平行四邊形ABCD中,AD∥BC,
∴∠AEB=∠EAD,
∵AE=AB,
∴∠ABE=∠AEB,
∴∠ABE=∠EAD;

(2)∵AD∥BC,
∴∠ADB=∠DBE,
∵∠ABE=∠AEB,∠AEB=2∠ADB,
∴∠ABE=2∠ADB,
∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,
∴AB=AD,
又∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是菱形.
點(diǎn)評(píng):本題考查了菱形的判定,平行四邊形的性質(zhì),平行線的性質(zhì),等邊對(duì)等角的性質(zhì),等角對(duì)等邊的性質(zhì),熟練掌握平行四邊形與菱形的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城)如圖①是3×3正方形方格,將其中兩個(gè)方格涂黑,并且使涂黑后的整個(gè)圖案是軸對(duì)稱圖形,約定繞正方形ABCD的中心旋轉(zhuǎn)能重合的圖案都視為同一種圖案,例如圖②中的四幅圖就視為同一種圖案,則得到的不同圖案共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城)如圖所示是一飛鏢游戲板,大圓的直徑把一組同心圓分成四等份,假設(shè)飛鏢擊中圓面上每一個(gè)點(diǎn)都是等可能的,則飛鏢落在黑色區(qū)域的概率是
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城)如圖,在以點(diǎn)O為原點(diǎn)的平面直角坐標(biāo)系中,一次函數(shù)y=-
1
2
x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C在直線AB上,且OC=
1
2
AB,反比例函數(shù)y=
k
x
的圖象經(jīng)過(guò)點(diǎn)C,則所有可能的k值為
1
2
或-
11
50
1
2
或-
11
50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城)如圖①,若二次函數(shù)y=
3
6
x2+bx+c的圖象與x軸交于A(-2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)y=
3
x的圖象的對(duì)稱點(diǎn)為C.
(1)求b、c的值;
(2)證明:點(diǎn)C在所求的二次函數(shù)的圖象上;
(3)如圖②,過(guò)點(diǎn)B作DB⊥x軸交正比例函數(shù)y=
3
x的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)y=
3
x的圖象于點(diǎn)E,連結(jié)AD、CD.如果動(dòng)點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),連結(jié)PQ、QE、PE.設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使PE平分∠APQ,同時(shí)QE平分∠PQC?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案