閱讀:解方程組
x2-3xy+2y2=0        (1)
x2+y2=10               (2)

由①得(x-y)(x-2y)=0,∴x-y=0,或x-2y=0.…(第一步)
因此,原方程組化為兩個(gè)方程組
x-y=0
x2+y2=10
,
x-2y=0
x2+y2=10

分別解這兩個(gè)方程組,得
原方程組的解為
x1=
5
y1=
5
x2=-
5
y2=-
5
,
x3=2
2
y3=
2
x4=-2
2
y4=-
2

填空:第一步中,運(yùn)用______法將方程①化為兩個(gè)二元一次方程,達(dá)到了______的目的.由第一步到第二步,將原方程組化為兩個(gè)由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組,體現(xiàn)了______的數(shù)學(xué)思想.第二步中,兩個(gè)方程組都是運(yùn)用______法達(dá)到______的目的,從而使方程組得以求解.
第一步中,運(yùn)用了因式分解的方法,達(dá)到了降次的目的,第二步,兩個(gè)方程運(yùn)用代入方法達(dá)到了消元的目的,
故答案為:因式分解,降次,代入,消元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀材料,解答問(wèn)題.
材料:利用解二元一次方程組的代入消元法可解形如
x2+y2=
1
2
x-y=1
的方程組.
如:由(2)得y=x-1,代入(1)消元得到關(guān)于x的方程:x2-x+
1
4
=0,∴x1=x2=
1
2

將x1=x2=
1
2
代入y=x-1得y1=y2=-
1
2
,∴方程組的解為
x1=x2=
1
2
y1=y2=-
1
2

請(qǐng)你用代入消元法解方程組
x+y=2…(1)
2x2-y2=1…(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料,解答問(wèn)題:
材料:利用二元一次方程組的代入消元法可解形如
x2+y2=5①
x-y=1②
的方程組,如:
由②得y=x-1,代入①得到關(guān)于x的方程:x2+(x-1)2=5,
化簡(jiǎn)得:x2-x-2=0,
解得:x1=-1,x2=2.
將x1=-1,x2=2分別代入y=x-1中,得y1=2,y2=1.
∴方程組的解為
x1=-1
y1=2
,
x2=2
y2=1

問(wèn)題:請(qǐng)你利用代入消元法解方程組:
x+y=2=2①
2x2-y2=1②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(1998•大連)閱讀:解方程組
x2-3xy+2y2=0        (1)
x2+y2=10               (2)

解:由①得(x-y)(x-2y)=0,∴x-y=0,或x-2y=0.…(第一步)
因此,原方程組化為兩個(gè)方程組
x-y=0
x2+y2=10
,
x-2y=0
x2+y2=10

分別解這兩個(gè)方程組,得
原方程組的解為
x1=
5
y1=
5
x2=-
5
y2=-
5
,
x3=2
2
y3=
2
x4=-2
2
y4=-
2

填空:第一步中,運(yùn)用
因式分解
因式分解
法將方程①化為兩個(gè)二元一次方程,達(dá)到了
降次
降次
的目的.由第一步到第二步,將原方程組化為兩個(gè)由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組,體現(xiàn)了
轉(zhuǎn)化
轉(zhuǎn)化
的數(shù)學(xué)思想.第二步中,兩個(gè)方程組都是運(yùn)用
代人
代人
法達(dá)到
消元
消元
的目的,從而使方程組得以求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:呼和浩特 題型:解答題

閱讀材料,解答問(wèn)題.
材料:利用解二元以次方程組的代入消元法可解形如
x2+y2=
1
2
x-y=1
的方程組.
如:由(2)得y=x-1,代入(1)消元得到關(guān)于x的方程:x2-x+
1
4
=0,∴x1=x2=
1
2

將x1=x2=
1
2
代入y=x-1得y1=y2=-
1
2
,∴方程組的解為
x1=x2=
1
2
y1=y2=-
1
2

請(qǐng)你用代入消元法解方程組
x+y=2…(1)
2x2-y2=1…(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案