已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,A為⊙O1上一點(diǎn),直線(xiàn)AC切⊙O2于點(diǎn)C,且交⊙O1于點(diǎn)B,AP的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)D.
(1)求證:∠BPC=∠CPD;
(2)若⊙O1半徑是⊙O2半徑的2倍,PD=10,AB=,求PC的長(zhǎng).
【答案】分析:(1)根據(jù)弦切角定理得出∠PAB=∠BPE,利用切線(xiàn)長(zhǎng)定理得出EP=EC,再利用三角形的外角性質(zhì)得出∠CPD=∠EPC+∠BPE,即可得出答案;
(2)首先得出△O1PA∽△O2DP,求出AP的長(zhǎng),進(jìn)而得出BC的長(zhǎng),再利用△DPC∽△CPB,△APC∽△ACD,即可得出PC,CD的關(guān)系即可得出PC的長(zhǎng).
解答:(1)證明:如圖1,過(guò)點(diǎn)P作兩圓的公切線(xiàn)PE,交BC于點(diǎn)E,
∵⊙O1與⊙O2外切于點(diǎn)P,直線(xiàn)AC切⊙O2于點(diǎn)C,
∴EP=EC,∠PAB=∠BPE,
∴∠ECP=∠EPC,
又∵∠PAC+∠ACP=∠CPD,
∴∠CPD=∠EPC+∠BPE,
∴∠BPC=∠CPD;

(2)解:如圖2,連接O1O2,AO1,DO2,CD,
∵∠O1PA=∠O1AP,∠O2DP=∠O2PD,∠O1PA=∠O2PD,
∴∠O1PA=∠O1AP=∠O2DP=∠O2PD,
∴△O1PA∽△O2DP,
==,
∵PD=10,
∴AP=20,
∵直線(xiàn)AC切⊙O2于點(diǎn)C,
∴AC2=AP×AD=(20+10)×20=600,
∴AC=10,
∵AB=7,
∴BC=3,
∵直線(xiàn)AC切⊙O2于點(diǎn)C,
∴∠PDC=∠PCB,
∵∠PDC=∠BPC,
∴△DPC∽△CPB,
=
=,
∵∠CAP=∠DAC,∠PCA=∠CDA,
∴△APC∽△ACD,
===,
∴CD=PC,
=,
解得:PC=2
點(diǎn)評(píng):此題主要考查了圓的綜合應(yīng)用以及弦切角定理和相似三角形的性質(zhì)和判定,根據(jù)已知得出PC與CD的比例關(guān)系是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知;如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,⊙O2的直徑AC交⊙O1于點(diǎn)B,⊙O2的弦FC切⊙精英家教網(wǎng)O1于點(diǎn)D,AD的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)E,連接AF、EF、BD.
(1)求證:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線(xiàn),A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•南京)已知,如圖,⊙O1與⊙O2相交,點(diǎn)P是其中一個(gè)交點(diǎn),點(diǎn)A在⊙O2上,AP的延長(zhǎng)線(xiàn)交⊙O1于點(diǎn)B,AO2的延長(zhǎng)線(xiàn)交⊙O1于點(diǎn)C、D,交⊙O2于點(diǎn)E,連接PC、PE、PD,且
PC
PD
=
CE
DE
,過(guò)A作⊙O1的切線(xiàn)AQ,切點(diǎn)為Q.求證:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線(xiàn)l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于A、B,若兩圓半徑分別為12和5,O1O2=13,則AB=
120
13
120
13

查看答案和解析>>

同步練習(xí)冊(cè)答案