【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個結論:①4ac﹣b20②4a+c2b;③3b+2c0;④mam+b+bam≠﹣1),其中正確結論的個數(shù)是( )

A.4B.3C.2D.1

【答案】B

【解析】

解:拋物線和x軸有兩個交點,

∴b24ac0,

∴4acb20,∴①正確;

對稱軸是直線x1,和x軸的一個交點在點(0,0)和點(1,0)之間,

拋物線和x軸的另一個交點在(﹣3,0)和(﹣20)之間,

把(﹣2,0)代入拋物線得:y=4a2b+c0,

∴4a+c2b∴②錯誤;

把(10)代入拋物線得:y=a+b+c0,

∴2a+2b+2c0,

∵b=2a,

∴3b,2c0∴③正確;

拋物線的對稱軸是直線x=1,

∴y=ab+c的值最大,

即把(m,0)(m≠0)代入得:y=am2+bm+cab+c,

∴am2+bm+ba,

mam+b+ba,∴④正確;

即正確的有3個,

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將長為2、寬為aa大于1且小于2)的長方形紙片按如圖①所示的方式折疊并壓平,剪下一個邊長等于長方形寬的正方形,稱為第一次操作:再把剩下的長方形按如圖②所示的方式折疊并壓平,剪下個邊長等于此時長方形寬的正方形,稱為第二次操作:如此反復操作下去,若在第n次操作后,剩下的長方形恰為正方形,則操作終止當n=3時,a的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量(單位:m3)和使用了節(jié)木龍頭50天的日用水量,得到頻數(shù)分布表如下:

1未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

0.6≤x≤0.7

頻數(shù)

1

3

2

4

9

26

5

2使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

頻數(shù)

1

5

13

10

16

5

(1)估計該家庭使用節(jié)水龍頭后,日用水量小于0.3 m3的概率;

(2)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形中,為對角線上一點,點在直線上,且.如圖①,當時,點在線段的延長線上,線段之間的數(shù)量關系是(無需證明);

1)如圖②,當,點在線段上時,線段之間有怎樣的數(shù)量關系?寫出你的猜想,并給予證明;

2)如圖③,當,點在線段的延長線上時,直接寫出線段之間又有怎樣的數(shù)量關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在以為直徑的上,與過點的切線垂直,垂足為于點,過于點,連接

1)求證:;

2)已知,過,連接,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉.若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點,則∠OAB大小的變化趨勢為( )

A.逐漸變小B.逐漸變大C.時大時小D.保持不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠按用戶的月需求量(件)完成一種產(chǎn)品的生產(chǎn),其中.每件的售價為18萬元,每件的成本(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量(件)成反比.經(jīng)市場調研發(fā)現(xiàn),月需求量與月份為整數(shù),)符合關系式為常數(shù)),且得到了表中的數(shù)據(jù).

月份(月)

1

2

成本(萬元/件)

11

12

需求量(件/月)

120

100

1)求滿足的關系式,請說明一件產(chǎn)品的利潤能否是12萬元;

2)求,并推斷是否存在某個月既無盈利也不虧損;

3)在這一年12個月中,若第個月和第個月的利潤相差最大,求.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點C恰落在雙曲線y=(x>0)上,此時□OABC的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司經(jīng)銷的一種產(chǎn)品每件成本為40元,要求在90天內完成銷售任務.已知該產(chǎn)品90天內每天的銷售價格與時間(第x天)的關系如下表:

時間(第x天)

1x50

50x90

x+50

90

任務完成后,統(tǒng)計發(fā)現(xiàn)銷售員小王90天內日銷售量p(件)與時間(第x天)滿足一次函數(shù)關系p=﹣2x+200.設小王第x天銷售利潤為W元.

1)直接寫出Wx之間的函數(shù)關系式,井注明自變量x的取值范圍;

2)求小生第幾天的銷售量最大?最大利潤是多少?

3)任務完成后,統(tǒng)計發(fā)現(xiàn)平均每個銷售員每天銷售利潤為4800公司制定如下獎勵制度:如果一個銷售員某天的銷售利潤超過該平均值,則該銷售員當天可獲得200元獎金.請計算小王一共可獲得多少元獎金?

查看答案和解析>>

同步練習冊答案