(1)證明:∵PH⊥OB,MD⊥OB,
∴PH∥MD,
∵PM∥OB,QR∥OB,
∴PM∥QR,
∴四邊形PQRM是平行四邊形,
∵PH⊥OB,
∴∠PHO=90°,
∵PM∥OB,
∴∠MPQ=∠PHO=90°,
∴四邊形PQRM為矩形;
(2)解:∠AOB=3∠BON.理由如下:
∵四邊形PQRM為矩形,
∴PS=SR=SQ=
PR,
∴∠SQR=∠SRQ,
又∵OP=
PR,
∴OP=PS,
∴∠POS=∠PSO,
∵QR∥OB,
∴∠SQR=∠BON,
在△SQR中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,
∴∠POS=2∠BON,
∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,
即∠AOB=3∠BON.
分析:(1)根據(jù)垂直于同一直線的兩直線平行可得PH∥MD,再根據(jù)平行于同一直線的兩直線平行可得PM∥QR,然后求出四邊形PQRM是平行四邊形,再求出∠MPQ=90°,根據(jù)有一個角是直角的平行四邊形是矩形證明即可;
(2)根據(jù)矩形的對角線互相平分可得PS=
PR,然后求出OP=PS,根據(jù)等邊對等角的性質(zhì)可得∠POS=∠PSO,再根據(jù)兩直線平行,同位角相等可得∠SQR=∠BON,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠PSO=2∠SQR,然后整理即可得解.
點評:本題考查了矩形的判定與性質(zhì),等邊對等角的性質(zhì),兩直線平行,同位角相等的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.