某科技開發(fā)公司研制出一種新型的產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元,在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于2600元.
(1)商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2600元?
(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲得的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲得的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲得的利潤越大,公司應(yīng)將最低銷售單價調(diào)整為多少元?(其它銷售條件不變)
【答案】分析:(1)設(shè)件數(shù)為x,則銷售單價為3000-10(x-10)元,根據(jù)銷售單價恰好為2600元,列方程求解;
(2)由利潤y=(銷售單價-成本單價)×件數(shù),及銷售單價均不低于2600元,按0≤x≤10,10<x≤50,x>50三種情況列出函數(shù)關(guān)系式;
(3)由(2)的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求利潤的最大值,并求出最大值時x的值,確定銷售單價.
解答:解:(1)設(shè)件數(shù)為x,依題意,得3000-10(x-10)=2600,解得x=50,
答:商家一次購買這種產(chǎn)品50件時,銷售單價恰好為2600元;

(2)當(dāng)0≤x≤10時,y=(3000-2400)x=600x,
當(dāng)10<x≤50時,y=[3000-10(x-10)-2400]x,即y=-10x2+700x
當(dāng)x>50時,y=(2600-2400)x=200x
∴y=

(3)由y=-10x2+700x可知拋物線開口向下,當(dāng)x=-=35時,利潤y有最大值,
此時,銷售單價為3000-10(x-10)=2750元,
答:公司應(yīng)將最低銷售單價調(diào)整為2750元.
點評:本題考查了二次函數(shù)的運用.關(guān)鍵是明確銷售單價與銷售件數(shù)之間的函數(shù)關(guān)系式,會表達單件的利潤及總利潤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡)某科技開發(fā)公司研制出一種新型的產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元,在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于2600元.
(1)商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2600元?
(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲得的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲得的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲得的利潤越大,公司應(yīng)將最低銷售單價調(diào)整為多少元?(其它銷售條件不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元,在該產(chǎn)品的試銷期間,公司決定組織一次促銷活動,促銷期間該產(chǎn)品的售價單位y(元)與銷售數(shù)量x(件)的函數(shù)關(guān)系如圖所示.
(1)求當(dāng)10≤x≤50時,y與x之間的函數(shù)關(guān)系式.
(2)設(shè)商家一次性購買這種產(chǎn)品m件,開發(fā)公司所獲得的利潤為z元,求z與m之間的函數(shù)關(guān)系式.
(3)當(dāng)商家一次性購買產(chǎn)品的件數(shù)超過某一數(shù)量時,是否存在隨著一次性購買數(shù)量的增多,公司所獲得的利潤反而減少這種情況?若存在,求出在這種情況下,m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元,在該產(chǎn)品的試銷期間,公司決定組織一次促銷活動,促銷期間該產(chǎn)品的售價單位y(元)與銷售數(shù)量x(件)的函數(shù)關(guān)系如圖所示.
(1)求當(dāng)10≤x≤50時,y與x之間的函數(shù)關(guān)系式.
(2)設(shè)商家一次性購買這種產(chǎn)品m件,開發(fā)公司所獲得的利潤為z元,求z與m之間的函數(shù)關(guān)系式.
(3)當(dāng)商家一次性購買產(chǎn)品的件數(shù)超過某一數(shù)量時,是否存在隨著一次性購買數(shù)量的增多,公司所獲得的利潤反而減少這種情況?若存在,求出在這種情況下,m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省中考真題 題型:解答題

某科技開發(fā)公司研制出一種新型的產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元,在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于2600元.
(1)商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2600元?
(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲得的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲得的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲得的利潤越大,公司應(yīng)將最低銷售單價調(diào)整為多少元?(其它銷售條件不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省黃岡市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某科技開發(fā)公司研制出一種新型的產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元,在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于2600元.
(1)商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2600元?
(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲得的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲得的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲得的利潤越大,公司應(yīng)將最低銷售單價調(diào)整為多少元?(其它銷售條件不變)

查看答案和解析>>

同步練習(xí)冊答案