【題目】若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.
科目:初中數(shù)學 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于點E,BE的延長線交CD于點F,且∠1+∠2=90°.猜想∠2與∠3的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=4,BC=3,以點D為圓心作圓,使A、B、C三點中至少有一點在圓內(nèi)且至少一點在圓外,⊙O的的半徑r的取值范圍是_________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點F為線段BC上的任意一點,當△EFC為直角三角形時,求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在邊BC上,求證:AB=AC;
(2)如圖2,若點O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】氫原子中電子和原子核之間的距離為0.00000000529厘米,用科學記數(shù)法表示這個距離為( )
A. 5.29×10-8 cm ; B. 5.29×10-9cm; C. 0.529×10-8 cm; D. 52.9×10-10 cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com