在平面直角坐標系中,一次函數(shù)的圖象與坐標軸圍成的三角形,叫做此一次函數(shù)的坐標三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點A,B,則△OAB為此函數(shù)的坐標三角形.
(1)求函數(shù)y=x+3的坐標三角形的三條邊長;
(2)若函數(shù)y=x+b(b為常數(shù))的坐標三角形周長為16,求此三角形面積.

【答案】分析:(1)先求函數(shù)y=x+3與x、y軸的交點坐標,再求三角形的三邊長;
(2)求得函數(shù)y=x+b與x、y軸的交點坐標,再求三角形的三邊長,把三邊的長加起來等于16,解方程求解即可.
解答:解:(1)∵直線y=x+3與x軸的交點坐標為(4,0),與y軸交點坐標為(0,3),
∴函數(shù)y=x+3的坐標三角形的三條邊長分別為3,4,5.

(2)直線y=x+b與x軸的交點坐標為(,0),與y軸交點坐標為(0,b),
AB===b,
當b>0時,,得b=4,此時,S△AOB===,∴坐標三角形面積為
當b<0時,,得b=-4,此時,S△AOB==||=,
∴坐標三角形面積為
綜上,當函數(shù)y=x+b的坐標三角形周長為16時,面積為
點評:本題考查了一次函數(shù)和幾何問題的綜合應用,本題中根據(jù)一次函數(shù)和坐標軸的交點坐標,求坐標三角形的三邊長是解題的基礎.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案