已知:如圖,⊙O與⊙O1交于A和B兩點(diǎn),O在⊙O1上,⊙O的弦BC交⊙O1于D.
求證:AD=DC.
分析:首先作出輔助,連接AC、AO、BO,根據(jù)圓周角定理可得∠ADB=∠AOB=2∠C,根據(jù)三角形的內(nèi)角與外角的關(guān)系得到∠ADB=∠C+∠DAC,從而得到∠C=∠DAC,再根據(jù)等角對(duì)等邊證出結(jié)論.
解答:證明:(如圖)連接AC、AO、BO.
∵∠ADB=∠AOB=2∠C,∠ADB=∠C+∠DAC,
∴∠C=∠DAC,
∴AD=DC.
點(diǎn)評(píng):此題主要考查了圓周角定理與三角形的內(nèi)外角的關(guān)系,做題的關(guān)鍵是證出∠C=∠DAC即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知:如圖,⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)A的直線交⊙O1于C,交⊙O2于D,過(guò)B的直線交⊙O1于E,交⊙O2于F,且CD∥EF.
求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于點(diǎn)A和點(diǎn)B,AC∥O1O2,交⊙O1于點(diǎn)C,⊙O1的半徑為5精英家教網(wǎng),⊙O2的半徑為
13
,AB=6.
求:(1)弦AC的長(zhǎng)度;
(2)四邊形ACO1O2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,⊙O1的半徑為3,且O1O2=8,則⊙O2的半徑R=
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•南京)已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,A為⊙O1上一點(diǎn),直線AC切⊙O2于點(diǎn)C,且交⊙O1于點(diǎn)B,AP的延長(zhǎng)線交⊙O2于點(diǎn)D.
(1)求證:∠BPC=∠CPD;
(2)若⊙O1半徑是⊙O2半徑的2倍,PD=10,AB=7
6
,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于A,B兩點(diǎn).求證:直線O1O2垂直平分AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案