(1)如圖,直角三角形ABC,∠C=90°,AC=8,BC=6,請(qǐng)?jiān)贐C的延長(zhǎng)線上找一點(diǎn)D,使△ABD為等腰三角形,畫出圖形,并在圖中標(biāo)出AD和CD的長(zhǎng),并寫出其周長(zhǎng)(不要過程).
  
  (2)畫出下面幾何體的三視圖.
  


  (1)周長(zhǎng):32      周長(zhǎng):    周長(zhǎng):(各2分)
  (2)三種視圖各2分.
  

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長(zhǎng)為4的正方形ABCD中,E是DC中點(diǎn),點(diǎn)F在BC邊上,且CF=1,在△AEF中作正方形A1B1C1D1,使邊A1B1在AF上,其余兩個(gè)頂點(diǎn)C1、D1分別在EF和AE上.
(1)請(qǐng)直接寫出圖中兩直角邊之比等于1:2的三個(gè)直角三角形(不另添加字母及輔助線);
(2)求AF的長(zhǎng)及正方形A1B1C1D1的邊長(zhǎng);
(3)在(2)的條件下,取出△AEF,將△EC1D1沿直線C1D1、△C1FB1沿直線C1B1分別向正方形A1B1C1D1內(nèi)折疊,求小正方形A1B1C1D1未被兩個(gè)折疊三角覆蓋的四邊形面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,小明將一張矩形紙片沿對(duì)角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長(zhǎng)為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點(diǎn)B、F、D在同一條直線上,F(xiàn)為公共直角頂點(diǎn).
精英家教網(wǎng)
小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了兩個(gè)問題,請(qǐng)你幫助解決.
(1)將圖3中的△ABF繞點(diǎn)F順時(shí)針方向旋轉(zhuǎn)30°到圖4的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線段FG的長(zhǎng)度;
(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點(diǎn)H,請(qǐng)證明:AH=DH.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
(1)sad 60°的值為( B )
A.
1
2
;B.1;C.
3
2
;D.2
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值是一一對(duì)應(yīng)的,因此,兩條邊長(zhǎng)的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(duì)(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對(duì)記作canB,這時(shí)canB=
底邊
=
BC
AB
,容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值也是一一對(duì)應(yīng)的.根據(jù)上述角的鄰對(duì)的定義,解下列問題:
(1)can30°=
3
3
;
(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寶山區(qū)一模)通過銳角三角比的學(xué)習(xí),我們已經(jīng)知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)比與角的大小之間可以相互轉(zhuǎn)化.類似的我們可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖在△ABC中,AB=AC,
頂角A的正對(duì)記作sadA,這時(shí)sadA=
底邊
=
BC
AB
.我們?nèi)菀字酪粋(gè)角的大小與這個(gè)角的正對(duì)值也是互相唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問題:
(1)sad60°=
1
1
;sad90°=
2
2

(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)試求sad36°的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案