【題目】計(jì)算:
(1)﹣7﹣11﹣9+5;
(2)(﹣1)10×2+(﹣2)3÷4.

【答案】
(1)解:原式=﹣18﹣9+5=﹣27+5=﹣22
(2)解:原式=1×2+(﹣8)÷4=2﹣2=0
【解析】(1)原式利用加減法則計(jì)算即可;(2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解有理數(shù)的四則混合運(yùn)算的相關(guān)知識(shí),掌握在沒(méi)有括號(hào)的不同級(jí)運(yùn)算中,先算乘方再算乘除,最后算加減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一長(zhǎng)方形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將△AED以DE為折痕向右折疊,AE與BC交于點(diǎn)F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=3x2的開(kāi)口方向是(
A.向上
B.向下
C.向左
D.向右

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形四邊條邊都相等,四個(gè)角都是90°.如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,點(diǎn)E是直線MN上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.

(1)如圖1,當(dāng)點(diǎn)E在線段BC上(不與點(diǎn)B、C重合)時(shí):

①判斷△ADG與△ABE是否全等,并說(shuō)明理由;
②過(guò)點(diǎn)F作FH⊥MN,垂足為點(diǎn)H,觀察并猜測(cè)線段BE與線段CH的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)E在射線CN上(不與點(diǎn)C重合)時(shí):

①判斷△ADG與△ABE是否全等,不需說(shuō)明理由;
②過(guò)點(diǎn)F作FH⊥MN,垂足為點(diǎn)H,已知GD=4,求△CFH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)角的余角是30°,那么這個(gè)角是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,是真命題的是( )

A. 同位角相等

B. 相等的角是直角

C. |y|=2,則y=±2

D. ab=0,則a=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x+a>ax+1的解集為x>1,a的取值范圍為(  )

A. a<1 B. a>1 C. a>0 D. a<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B>∠C,AD⊥BC,垂足為D,AE平分∠BAC.
(1)已知∠B=60°,∠B=30°,求∠DAE的度數(shù);
(2)已知∠B=3∠C,說(shuō)明:∠DAE=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖,矩形ABCD中,AB=8,AD=6,點(diǎn)E、F分別在邊CD、AB上.

(1)若DE=BF,求證:四邊形AFCE是平行四邊形;

(2)若四邊形AFCE是菱形,求菱形AFCE的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案