如圖,在邊長為2的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C. 則A′C長度的最小值是       .
.

試題分析:如圖1,連接CM,過M點作MH⊥CD交CD的延長線于點H,
則由已知可得,在Rt△DHM中,DM=1,∠HDM=60°,∴.∴ .
.
又∵根據(jù)翻折對稱的性質,A′M=AM=1,
∴△CA′M中,兩邊一定,要使A′C長度的最小即要∠CM A′最小,此時點A′落在MC上,如圖2.
∵M A′=NA=1,∴.
∴A′C長度的最小值是.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1,點E、F分別是正方形ABCD的邊BC、CD上的點,∠EAF=45°,連接EF,
則EF、BE、FD之間的數(shù)量關系是:EF=BE+FD.連結BD,交AE、AF于點M、N,且MN、BM、DN滿足,請證明這個等量關系;
(2)在△ABC中, AB=AC,點D、E分別為BC邊上的兩點.
①如圖2,當∠BAC=60°,∠DAE=30°時,BD、DE、EC應滿足的等量關系是__________________;
②如圖3,當∠BAC=,(0°<<90°),∠DAE=時,BD、DE、EC應滿足的等量關系是____________________.【參考:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在等腰直角三角形ABC中,AB=AC=4,點O為BC的中點,以O為圓心作⊙O交BC于點M、N,⊙O與AB、AC相切,切點分別為D、E,則∠MND的度數(shù)為   °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=AC,點E,F分別在AB,AC上,AE=AF,BF與CE相交于點P,求證:PB=PC,并請直接寫出圖中其他相等的線段.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AC和BD相交于點O,OA=OC,OB=OD,求證:AB∥CD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,在Rt△ABC中,∠ABC=90°∠A=30°,CD⊥AB交AB于點E,且CD=AC,DF∥BC,分別與AB、AC交于點G、F.
(1)求證:GE=GF
(2)若BD=1,求DF的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題中,正確的是
A.平分弦的直徑垂直于弦
B.對角線相等的平行四邊形是正方形
C.對角線互相垂直的四邊形是菱形
D.三角形的一條中線能將三角形分成面積相等的兩部分

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,兩個直徑分別為36cm和16cm的球,靠在一起放在同一水平面上,組成如圖所示的幾何體,則該幾何體的俯視圖的圓心距是(   )源]
A.10cm.B.24cmC.26cm.D.52cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,O為ABCD兩對角線的交點,圖中全等的三角形有(   ) 
A.1對B.2對C.3對D.4對

查看答案和解析>>

同步練習冊答案