【題目】如圖,AB是⊙O的直徑,AB=6,過點O作OH⊥AB交圓于點H,點C是弧AH上異于A、B的動點,過點C作CD⊥OA,CE⊥OH,垂足分別為D、E,過點C的直線交OA的延長線于點G,且∠GCD=∠CED.
(1)求證:GC是⊙O的切線;
(2)求DE的長;
(3)過點C作CF⊥DE于點F,若∠CED=30°,求CF的長.
【答案】
(1)
證明:連接OC,交DE于M,如圖所示:
∵OH⊥AB,CD⊥OA,CE⊥OH,∴∠DOE=∠OEC=∠ODC=90°,∴四邊形ODCE是矩形,∴∠DCE=90°,DE=OC,MC=MD,
∴∠CED+∠MDC=90°,∠MDC=∠MCD,∵∠GCD=∠CED,∴∠GCD+∠MCD=90°,即GC⊥OC,∴ GC是⊙O的切線
(2)
解:由(1)得:DE=OC=AB=3;
(3)
解:∵∠DCE=90°,∠CED=30°,∴CE=DEcos∠CED=3×=,∴ CF=CE=
【解析】(1)先證明四邊形ODCE是矩形,得出∠DCE=90°,DE=OC,MC=MD,得出∠CED+∠MDC=90°,∠MDC=∠MCD,證出∠GCD+∠MCD=90°,即可得出結(jié)論;(2)由(1)得:DE=OC=AB,即可得出結(jié)果;(3)運用三角函數(shù)求出CE,再由含30°角的直角三角形的性質(zhì)即可得出結(jié)果.
科目:初中數(shù)學 來源: 題型:
【題目】如圖從一個建筑物的A處測得對面樓BC的頂部B的仰角為37°,底部C的俯角為45°,觀察點與樓的水平距離AD為40m,求樓BC的高度(參考數(shù)據(jù):sin37°≈0.60;cos37°≈0.80;tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點D,交BC于點E(BE>EC),且BD=2.過點D作DF∥BC,交AB的延長線于點F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積;
(3)若=,DF+BF=8,如圖2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,體育場內(nèi)一看臺與地面所成夾角為30°,看臺最低點A到最高點B的距離為10,A,B兩點正前方有垂直于地面的旗桿DE.在A,B兩點處用儀器測量旗桿頂端E的仰角分別為60°和15°(仰角即視線與水平線的夾角)
(1)
求AE的長;
(2)已知旗桿上有一面旗在離地1米的F點處,這面旗以0.5米/秒的速度勻速上升,求這面旗到達旗桿頂端需要多少秒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,延長BC至M,使BM=DN,連接MN交BD延長線于點E.
(1)求證:BD+2DE=BM.
(2)如圖2,連接BN交AD于點F,連接MF交BD于點G.若AF:FD=1:2,且CM=2,則線段DG=_____;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點P在AD上,且不與A、D重合,BP的垂直平分線分別交CD、AB于E、F兩點,垂足為Q,過E作EH⊥AB于H.
(1)求證:HF=AP;
(2)若正方形ABCD的邊長為12,AP=4,求線段EQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E,若BF=6,AB=4,則AE的長為( )
A.
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com