精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,⊙A與y軸相切于原點O,平行于x軸的直線交⊙A于M、N兩點,若點M的坐標是(-4,-2),則弦MN的長為   
【答案】分析:可先設半徑的大小,由此得出A點的方程.連接AM、AN根據等腰三角形的性質即可得出AN的長度,再根據兩點之間的距離公式即可解出N點的坐標,從而求得MN的長度.
解答:解:分別過點M、N作x軸的垂線,過點A作AB⊥MN,連接AN
設⊙A的半徑為r.
則AN=OA=r,AB=2,
∵AB⊥MN,
∴BM=BN,
∴BN=4-r;
則在Rt△ABN中,根據勾股定理,
得AB2+BN2=AN2,即:22+(4-r)2=r2,解得r=2.5,
則N到y(tǒng)軸的距離為1,
又∵點N在第三象限,
∴N的坐標為(-1,-2);
∴MN=3;
故答案為:3.
點評:本題綜合考查了垂徑定理、坐標與圖形的性質、勾股定理及切線的性質.解此類題一般要把半徑、弦心距、弦的一半構建在一個直角三角形里,運用勾股定理求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案