【題目】如圖,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,BC與 B′C′交于點(diǎn)P,此時(shí)∠BPB′=25°,則∠CAB的大小為_____.
【答案】77.5°
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′,∠B=∠B′,AC=AC′,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等求出∠C′CA=∠CAB,由三角形內(nèi)角和定理可求得∠BAB′=∠BPB′=25°,從而可得∠CAC′=25°,然后利用等腰三角形兩底角相等求出∠ACC′,繼而可求得答案.
∵CC′∥AB,
∴∠C′CA=∠CAB,
又∵C、C′為對(duì)應(yīng)點(diǎn),點(diǎn) A 為旋轉(zhuǎn)中心,
∴AC=AC′,
∴△ACC′為等腰三角形,
∴∠ACC′=∠AC′C,
∵∠BAB′=∠CAC′,∠AEB=∠B′EP,∠B=∠B′,
∴∠BAB′=∠BPB′=25°,
∴∠CAC′=25°,
∴∠ACC′=77.5°,
∴∠CAB=77.5°,
故答案為:77.5°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)與反比例函數(shù)(>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線(xiàn)AB的解析式;
(2)觀察圖象,當(dāng)時(shí),直接寫(xiě)出的解集;
(3)若點(diǎn)P是軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=-x2+2x+3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線(xiàn)的頂點(diǎn),點(diǎn)P為第一象限拋物線(xiàn)上一點(diǎn),且∠DAP=45°,則點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)期間,某食品店平均每天可賣(mài)出300只粽子,賣(mài)出1只粽子的利潤(rùn)是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣(mài)出100只粽子.為了使每天獲取的利潤(rùn)更多,該店決定把零售單價(jià)下降m(0<m<1)元.
(1)零售單價(jià)下降m元后,該店平均每天可賣(mài)出_____只粽子,利潤(rùn)為_(kāi)____元.
(2)在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使該店每天獲取的利潤(rùn)是420元并且賣(mài)出的粽子更多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“為了安全,請(qǐng)勿超速”.如圖,一條公路建成通車(chē),在某直線(xiàn)路段MN限速60千米/小時(shí),為了檢測(cè)車(chē)輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車(chē)從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車(chē)超速了嗎?請(qǐng)說(shuō)明理由.
(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個(gè)結(jié)論:
①abc<0;
②b<a﹣c;
③4a+2b+c>0;
④2c<3b;
⑤a+b<m(am+b),(m≠1的實(shí)數(shù))
⑥2a+b+c>0,其中正確的結(jié)論的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)AD為⊙O 的直徑,E是AB上一點(diǎn),將正方形的一個(gè)角沿EC折疊,使得點(diǎn)B恰好與圓上的點(diǎn)F重合,則 tan∠AEF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過(guò)三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.
(1)當(dāng)y1﹣y2=4時(shí),求m的值;
(2)如圖,過(guò)點(diǎn)B、C分別作x軸、y軸的垂線(xiàn),兩垂線(xiàn)相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請(qǐng)寫(xiě)出點(diǎn)P坐標(biāo)(不需要寫(xiě)解答過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com