【題目】從長(zhǎng)度分別為2、3、4、5的4條線段中任取3條,能構(gòu)成鈍角三角形的概率為(
A.
B.
C.
D.

【答案】A
【解析】解:根據(jù)三角形三邊關(guān)系定理:三角形兩邊之和大于第三邊, 從長(zhǎng)度分別為2、3、4、5的4條線段中任取3條作邊,
能組成三角形的是:2,3,4;2,4,5;3,4,5;共三組,
∴能組成三角形的概率為3÷4= ,
故選A.
【考點(diǎn)精析】本題主要考查了三角形三邊關(guān)系和列表法與樹狀圖法的相關(guān)知識(shí)點(diǎn),需要掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊;當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)直角三角形紙片ABO放置在平面直角坐標(biāo)系中,點(diǎn) ,點(diǎn)B(0,1),點(diǎn)O(0,0).P是邊AB上的一點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),沿著OP折疊該紙片,得點(diǎn)A的對(duì)應(yīng)點(diǎn)A'.
(1)如圖①,當(dāng)點(diǎn)A'在第一象限,且滿足A'B⊥OB時(shí),求點(diǎn)A'的坐標(biāo);

(2)如圖②,當(dāng)P為AB中點(diǎn)時(shí),求A'B的長(zhǎng);

(3)當(dāng)∠BPA'=30°時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=5,BC=6,點(diǎn)O是邊BC上的動(dòng)點(diǎn),以點(diǎn)O為圓心,OB為半徑作圓O,交AB邊于點(diǎn)D,過(guò)點(diǎn)D作∠ODP=∠B,交邊AC于點(diǎn)P,交圓O與點(diǎn)E.設(shè)OB=x.
(1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),求PD的長(zhǎng);
(2)設(shè)AP﹣EP=y,求y關(guān)于x的解析式及定義域;
(3)聯(lián)結(jié)OP,當(dāng)OP⊥OD時(shí),試判斷以點(diǎn)P為圓心,PC為半徑的圓P與圓O的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y= x2+bx+c與x軸交于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B(0, ).直線y=kx 過(guò)點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.

(1)求拋物線y= x2+bx+c與直線y=kx 的解析式;
(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過(guò)點(diǎn)P作y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,小明在繡湖公園的A處正面觀測(cè)解百購(gòu)物中心墻面上的電子屏幕,測(cè)得屏幕上端C處的仰角為30°,接著他正對(duì)電子屏幕方向前進(jìn)7m到達(dá)B處,又測(cè)得該屏幕上端C處的仰角為45°.已知電子屏幕的下端離開地面距離DE為4m,小楊的眼睛離地面1.60m,電子屏幕的上端與墻體的頂端平齊.求電子屏幕上端與下端之間的距離CD(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點(diǎn)M是邊AB的中點(diǎn),連結(jié)CM,點(diǎn)P從點(diǎn)C出發(fā),以1cm/s的速度沿CB運(yùn)動(dòng)到點(diǎn)B停止,以PC為邊作正方形PCDE,點(diǎn)D落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t=時(shí),點(diǎn)E落在△MBC的邊上;
(2)以E為圓心,1cm為半徑作圓E,則當(dāng)t=時(shí),圓E與直線AB或直線CM相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對(duì)應(yīng)點(diǎn)分別為A′,B′,A′,B′均在圖中格點(diǎn)上,若線段AB上有一點(diǎn)P(m,n),則點(diǎn)P在A′B′上的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為(
A.( ,n)??
B.(m,n)??
C.( , )??
D.(m,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,AD與△ABC的外接圓⊙O恰好相切于點(diǎn)A,邊CD與⊙O相交于點(diǎn)E,連接AE,BE.

(1)求證:AB=AC;
(2)若過(guò)點(diǎn)A作AH⊥BE于H,求證:BH=CE+EH.

查看答案和解析>>

同步練習(xí)冊(cè)答案