【題目】從長度分別為2、3、4、5的4條線段中任取3條,能構成鈍角三角形的概率為( )
A.
B.
C.
D.
科目:初中數(shù)學 來源: 題型:
【題目】將一個直角三角形紙片ABO放置在平面直角坐標系中,點 ,點B(0,1),點O(0,0).P是邊AB上的一點(點P不與點A,B重合),沿著OP折疊該紙片,得點A的對應點A'.
(1)如圖①,當點A'在第一象限,且滿足A'B⊥OB時,求點A'的坐標;
(2)如圖②,當P為AB中點時,求A'B的長;
(3)當∠BPA'=30°時,求點P的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=6,點O是邊BC上的動點,以點O為圓心,OB為半徑作圓O,交AB邊于點D,過點D作∠ODP=∠B,交邊AC于點P,交圓O與點E.設OB=x.
(1)當點P與點C重合時,求PD的長;
(2)設AP﹣EP=y,求y關于x的解析式及定義域;
(3)聯(lián)結OP,當OP⊥OD時,試判斷以點P為圓心,PC為半徑的圓P與圓O的位置關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于點A(﹣2,0),交y軸于點B(0, ).直線y=kx 過點A與y軸交于點C,與拋物線的另一個交點是D.
(1)求拋物線y= x2+bx+c與直線y=kx 的解析式;
(2)設點P是直線AD下方的拋物線上一動點(不與點A、D重合),過點P作y軸的平行線,交直線AD于點M,作DE⊥y軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在請求出點P的坐標;若不存在,請說明理由;
(3)在(2)的條件下,作PN⊥AD于點N,設△PMN的周長為m,點P的橫坐標為x,求m與x的函數(shù)關系式,并求出m的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小明在繡湖公園的A處正面觀測解百購物中心墻面上的電子屏幕,測得屏幕上端C處的仰角為30°,接著他正對電子屏幕方向前進7m到達B處,又測得該屏幕上端C處的仰角為45°.已知電子屏幕的下端離開地面距離DE為4m,小楊的眼睛離地面1.60m,電子屏幕的上端與墻體的頂端平齊.求電子屏幕上端與下端之間的距離CD(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點M是邊AB的中點,連結CM,點P從點C出發(fā),以1cm/s的速度沿CB運動到點B停止,以PC為邊作正方形PCDE,點D落在線段AC上.設點P的運動時間為t(s).
(1)當t=時,點E落在△MBC的邊上;
(2)以E為圓心,1cm為半徑作圓E,則當t=時,圓E與直線AB或直線CM相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結論錯誤的是( )
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.S△ADH=S△CEG
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應點分別為A′,B′,A′,B′均在圖中格點上,若線段AB上有一點P(m,n),則點P在A′B′上的對應點P′的坐標為( )
A.( ,n)??
B.(m,n)??
C.( , )??
D.(m, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,AD與△ABC的外接圓⊙O恰好相切于點A,邊CD與⊙O相交于點E,連接AE,BE.
(1)求證:AB=AC;
(2)若過點A作AH⊥BE于H,求證:BH=CE+EH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com