(2007•威海)如圖,正方形網(wǎng)格的每一個小正方形的邊長都是1,試求∠A1E2A2+∠A4E2C4+∠A4E5C4的度數(shù).

【答案】分析:要求∠A1E2A2+∠A4E2C4+∠A4E5C4的度數(shù),不能把其中每個角度數(shù)求出,只能把這幾個角的和轉換成等于一個已知角.所以連接A3E2,容易證明Rt△A3A2E2≌Rt△A1A2E2,得到∠A3E2A2=∠A1E2A2.再通過利用勾股定理計算證明可以得到△A4C4E5≌△A3C3E2,這樣∠A3E2C3=∠A4E5C4,再利用圖形的已知條件進行轉換可以得到:∠A1E2A2+∠A4E2C4+∠A4E5C4=∠A2E2C4=45°.
解答:解:連接A3E2
∵A3A2=A1A2,A2E2=A2E2,∠A3A2E2=∠A1A2E2=90°,
∴Rt△A3A2E2≌Rt△A1A2E2(SAS).
∴∠A3E2A2=∠A1E2A2.(3分)
由勾股定理,得,
∵A4C4=A3C3=2,
∴△A4C4E5≌△A3C3E2(SSS).
∴∠A3E2C3=∠A4E5C4.(6分)
∴∠A1E2A2+∠A4E2C4+∠A4E5C4=∠A3E2C4+∠A4E2C4+∠A3E2C3=∠A2E2C4
由圖可知△E2C2C4為等腰直角三角形.
∴∠A2E2C4=45度.
即∠A1E2A2+∠A4E2C4+∠A4E5C4=45°(9分).
點評:此題要多次應用全等三角形的判定與性質,把題目要求的幾個角之和轉換到等于一個知道具體度數(shù)的角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標系中,點A的坐標為(1,2),點B的坐標為(3,1),二次函數(shù)y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數(shù)表達式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數(shù)表達式;
(3)設拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標;
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年高中段自主招生科學素養(yǎng)模擬卷(數(shù)學部分)(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標系中,點A的坐標為(1,2),點B的坐標為(3,1),二次函數(shù)y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數(shù)表達式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數(shù)表達式;
(3)設拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標;
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年山東省威海市中考數(shù)學試卷(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標系中,點A的坐標為(1,2),點B的坐標為(3,1),二次函數(shù)y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數(shù)表達式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數(shù)表達式;
(3)設拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標;
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2007•威海)如圖,一條小船從港口A出發(fā),沿北偏東40°方向航行20海里后到達B處,然后又沿北偏西30°方向航行10海里后到達C處,問此時小船距港口A多少海里?(結果精確到1海里;參考數(shù)據(jù):以下數(shù)據(jù)可以選用:sin40°≈0.6428,cos40°≈0.7660,tan40°≈0.8391,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源:2007年山東省威海市中考數(shù)學試卷(解析版) 題型:填空題

(2007•威海)如圖,AB是⊙O的直徑,點C、D、E都在⊙O上,若∠C=∠D=∠E,則∠A+∠B=    度.

查看答案和解析>>

同步練習冊答案