【題目】某校體育老師為了解該校八年級學(xué)生對球類運動項目的喜愛情況,進行了隨機抽樣調(diào)查(每位學(xué)生必須且只能選擇一項最喜愛的運動項目),并將調(diào)查結(jié)果進行整理,繪制了如圖不完整的統(tǒng)計圖表.請根據(jù)圖表中的信息解答下列問題:
類別 | 頻數(shù) |
A.乒乓球 | 16 |
B.足球 | 20 |
C.排球 | n |
D.籃球 | 15 |
E.羽毛球 | m |
(1)填空:m= , n=;
(2)若該年級有學(xué)生800人,請你估計這個年級最喜愛籃球的學(xué)生人數(shù);
(3)在這次調(diào)查中隨機抽中一名最喜愛足球的學(xué)生的概率是多少?
【答案】
(1)17;12
(2)解:根據(jù)題意得:
800× =150(人),
答:估計這個年級有150人最喜愛籃球
(3)解:∵喜愛足球的學(xué)生有20人,
∴在這次調(diào)查中隨機抽中一名最喜愛足球的學(xué)生的概率是:P= =
【解析】解:(1)調(diào)查的學(xué)生數(shù)是: =80(人), 則m=80×21.25%=17(人),
n=80﹣16﹣20﹣15﹣17=12(人),
所以答案是:17;12.
【考點精析】利用扇形統(tǒng)計圖和概率公式對題目進行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),B(b,3),C(4,0),且滿足(a+b)2+| b-3|=0,線段AB交y軸于F點.
(1)求點A、B的坐標(biāo).
(2)求點F的坐標(biāo);
(3)點P為坐標(biāo)軸上一點,若△ABP的面積和△ABC的面積相等,求出P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃容器高19cm,底面周長為60cm,在外側(cè)距下底1.5cm的點A處有一只蜘蛛,在蜘蛛正對面的圓柱形容器的外側(cè),距上底1.5cm處的點B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請你幫蜘蛛計算它沿容器側(cè)面爬行的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①過一點有且只有一條直線與已知直線平行;
②無論k取何實數(shù),多項式x2-ky2總能分解成兩個一次因式積的形式;
③ 若(t-3)3-2t=1,則t可以取的值有3個;
④關(guān)于x,y的方程組,將此方程組的兩個方程左右兩邊分別對應(yīng)相加,
得到一個新的方程,其中當(dāng)a每取一個值時,就有一個方程,而這些方程總有一個公共解,則這個公共解是,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】織里某品牌童裝在甲、乙兩家門店同時銷售A,B兩款童裝,4月份甲門店銷售A款童裝60件,B款童裝15件,兩款童裝的銷售總額為3600元,乙門店銷售A款童裝40件,B款童裝60件,兩款童裝的銷售總額為4400元.
(1)A款童裝和B款童裝每件售價各是多少元?
(2)現(xiàn)計劃5月將A款童裝的銷售額增加20%,問B款童裝的銷售額需增加百分之幾,才能使A,B兩款童裝的銷售額之比為4:3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.
(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;
(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;
(3)從火車站到河流怎樣走最近,畫圖并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△AB′C′,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把方程4x=8變形為x=2,其依據(jù)是( )
A.等式的性質(zhì)1B.等式的性質(zhì)2C.分式的基本性質(zhì)D.不等式的性質(zhì)1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com