在直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),拋物線y=x2-x-6與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.如果點(diǎn)M在y軸右側(cè)的拋物線上,S△AMO=
23
S△COB,那么點(diǎn)M的坐標(biāo)是
 
分析:根據(jù)拋物線的定義可求出m=2,然后再令y=0,解方程求出A,B兩點(diǎn),再令x=0,求出C點(diǎn)坐標(biāo),設(shè)出M點(diǎn)坐標(biāo),根據(jù)它在拋物線上和S△ABO=
2
3
S△COB,這兩個(gè)條件求出M點(diǎn)坐標(biāo).
解答:解:∵y=x2-x-6為拋物線,
∵拋物線y=x2-x-6與x軸交于A,B兩點(diǎn),
令y=0,設(shè)方程x2-x-6=0的兩根為x1,x2,
∴x1=-2,x2=3,
∴A(-2,0),B(3,0),
設(shè)M點(diǎn)坐標(biāo)為(a,a2-a-6),(a>0)
∵S△AMO=
2
3
S△COB
1
2
×AO×|yM|=
2
3
×
1
2
×OC×|xB|,
1
2
×
2×|a2-a-6|=
2
3
×
1
2
×6×3,
解得,a1=0,a2=1,a3=-3,a4=4,
∵點(diǎn)M在y軸右側(cè)的拋物線上,
∴a>0,
∴a=1,或a=4,
a2-a-6=12-1-6=-6,或a2-a-6=42-4-6=6
∴M點(diǎn)坐標(biāo)為(1,-6)或(4,6).
故答案為:(1,-6)或(4,6).
點(diǎn)評:此題主要考查一元二次方程與函數(shù)的關(guān)系,函數(shù)與x軸的交點(diǎn)的橫坐標(biāo)就是方程的根,若方程無根說明函數(shù)與x軸無交點(diǎn),其圖象在x軸上方或下方,兩者互相轉(zhuǎn)化,要充分運(yùn)用這一點(diǎn)來解題,另外此題把三角形的面積關(guān)系式與函數(shù)的圖象聯(lián)系起來,計(jì)算量比較大,關(guān)鍵是利用三角形的幾何關(guān)系來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

首先,我們看兩個(gè)問題的解答:
問題1:已知x>0,求x+
3
x
的最小值.
問題2:已知t>2,求
t2-5t+9
t-2
的最小值.
問題1解答:對于x>0,我們有:x+
3
x
=(
x
-
3
x
)2+2
3
2
3
.當(dāng)
x
=
3
x
,即x=
3
時(shí),上述不等式取等號,所以x+
3
x
的最小值2
3

問題2解答:令x=t-2,則t=x+2,于是
t2-5t+9
t-2
=
(x+2)2-5(x+2)+9
x
=
x2-x+3
x
=x+
3
x
-1

由問題1的解答知,x+
3
x
的最小值2
3
,所以
t2-5t+9
t-2
的最小值是2
3
-1

弄清上述問題及解答方法之后,解答下述問題:
在直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k>0,b>0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且使得△OAB的面積值等于|OA|+|OB|+3.
(1)用b表示k;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系xOy中,正方形OCBA的頂點(diǎn)A,C分別在y軸,x軸上,點(diǎn)B坐標(biāo)為(6,6),拋物線y=ax2+bx+c經(jīng)過點(diǎn)A,B兩點(diǎn),且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點(diǎn)E,F(xiàn)同時(shí)分別從點(diǎn)A,點(diǎn)B出發(fā),分別沿A→B,B→C運(yùn)動,速度都是每秒1個(gè)單位長度,當(dāng)點(diǎn)E到達(dá)終點(diǎn)B時(shí),點(diǎn)E,F(xiàn)隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒,△EBF的面積為S.
①試求出S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以E,B,R,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出點(diǎn)R的坐標(biāo);如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系xoy中,函數(shù)y=4x的圖象與反比例函數(shù)y=
kx
(k>0)的圖象有兩個(gè)公共點(diǎn)A、B(如圖),其中點(diǎn)A的縱坐標(biāo)為4過點(diǎn)A作x軸的垂線,再過點(diǎn)B作y軸的垂線,兩垂線相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京二模)已知:如圖,在直角坐標(biāo)系xOy中,點(diǎn)A(8,0)、B(0,6),點(diǎn)C在x軸的負(fù)半軸上,AB=AC.動點(diǎn)M在x軸上從點(diǎn)C向點(diǎn)A移動,動點(diǎn)N在線段AB上從點(diǎn)A向點(diǎn)B移動,點(diǎn)M、N同時(shí)出發(fā),且移動的速度都為每秒1個(gè)單位,移動時(shí)間為t秒(0<t<10).
(1)設(shè)△AMN的面積為y,求y關(guān)于t的函數(shù)關(guān)系解析式;
(2)求四邊形MNBC的面積最小是多少?
(3)求時(shí)間t為何值時(shí),△AMN是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山三模)如圖,在直角坐標(biāo)系xOy中,A、B是x軸上的兩點(diǎn),以AB為直徑的圓交y軸于C,設(shè)過A、B、C三點(diǎn)的拋物線的解析式為y=x2-mx+n.方程x2-mx+n=0的兩根倒數(shù)和為-4.
(1)求n的值;
(2)求此拋物線的解析式;
(3)設(shè)平行于x軸的直線交此拋物線于E、F兩點(diǎn),問是否存在此線段EF為直徑的圓恰好與x軸相切?若存在,求出此圓的半徑;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案