【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿A→D→C運(yùn)動,點(diǎn)P從點(diǎn)A出發(fā)的同時點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向點(diǎn)B運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,點(diǎn)Q也停止運(yùn)動.設(shè)點(diǎn)P,Q運(yùn)動的時間為t秒.

(1)從運(yùn)動開始,當(dāng)t取何值時,PQ∥CD?

(2)從運(yùn)動開始,當(dāng)t取何值時,△PQC為直角三角形?

【答案】(1)4;(2)t=6

【解析】

試題分析:(1)添加PD=CQ即可判斷以PQDC為頂點(diǎn)的四邊形是平行四邊形.

(2)分兩種情況討論:點(diǎn)P處為直角,點(diǎn)Q處是直角.

試題解析:(1)當(dāng)PQCD時,四邊形PDCB是平行四邊形,此時PD=QC,12﹣2t=t,t=4.當(dāng)t=4時,四邊形PQDC是平行四邊形.

(2)過P點(diǎn),作PEBC于E,DFBC,DF=AB=8,FC=BC﹣AD=1812=6,DC==10,

①當(dāng)PQBC,PQC是直角三角形.則:12﹣2t+t=6,t=6,此時P運(yùn)動到了D處;

②當(dāng)QPPC,如圖1,PC=12+10-2t=22-2t,CQ=t,cosC=,,解得:t=當(dāng)t=6時,PQC是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x1是方程x2+bx0的一個根,則它的兩根之和是( 。

A.1B.1C.0D.±1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是(
A.CB=CD
B.∠BAC=∠DAC
C.∠BCA=∠DCA
D.∠B=∠D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個條件,某學(xué)習(xí)小組在討論這個條件時給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有(

A.1種
B.2種
C.3種
D.4種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(m1)x|m|2 019是關(guān)于x的一元一次不等式,則m_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)測試中,七(2)班的平均分為85分,把高于平均分的高出部分?jǐn)?shù)記為正數(shù),老師將某一小組的美美、多多、田田、樂樂四位同學(xué)的成績記為+7,-4,-11,+13,則這四位同學(xué)實(shí)際成績最高的是(
A.美美
B.多多
C.田田
D.樂樂

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一元二次方程x2﹣2x+k=0有兩個不相等的實(shí)數(shù)根,則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且相交于O點(diǎn). ①試說明△OBC是等腰三角形;
②連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°.
(1)用直尺和圓規(guī)作出BC的垂直平分線(保留作圖痕跡,不要求寫作法);
(2)BC的垂直平分線與AC相交于D,連結(jié)BD,若∠C=30°,則∠ABD=

查看答案和解析>>

同步練習(xí)冊答案