【題目】如圖,點A,B,C,D是直徑為AB的⊙O上的四個點,C是劣弧 的中點,AC與BD交于點E.
(1)求證:DC2=CEAC;
(2)若AE=2,EC=1,求證:△AOD是正三角形;
(3)在(2)的條件下,過點C作⊙O的切線,交AB的延長線于點H,求△ACH的面積.
【答案】
(1)證明:∵C是劣弧 的中點,
∴∠DAC=∠CDB,
∵∠ACD=∠DCE,
∴△ACD∽△DCE,
∴ = ,
∴DC2=CEAC
(2)證明:∵AE=2,EC=1,
∴AC=3,
∴DC2=CEAC=1×3=3,
∴DC= ,
連接OC、OD,如圖所示:
∵C是劣弧 的中點,
∴OC平分∠DOB,BC=DC= ,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴AB= =2 ,
∴OB=OC=OD=DC=BC= ,
∴△OCD、△OBC是正三角形,
∴∠COD=∠BOC=∠OBC=60°,
∴∠AOD=180°﹣2×60°=60°,
∵OA=OD,
∴△AOD是正三角形
(3)解:∵CH是⊙O的切線,∴OC⊥CH,
∵∠COH=60°,
∴∠H=30°,
∵∠BAC=90°﹣60°=30°,
∴∠H=∠BAC,
∴AC=CH=3,
∵AH=3 ,AH上的高為BCsin60°= ,
∴△ACH的面積= ×3 × =
【解析】(1)由圓周角定理得出∠DAC=∠CDB,證明△ACD∽△DCE,得出對應(yīng)邊成比例,即可得出結(jié)論;(2)求出DC= ,連接OC、OD,如圖所示:證出BC=DC= ,由圓周角定理得出∠ACB=90°,由勾股定理得出AB= =2 ,得出OB=OC=OD=DC=BC= ,證出△OCD、△OBC是正三角形,得出∠COD=∠BOC=∠OBC=60°,求出∠AOD=60°,即可得出結(jié)論;(3)由切線的性質(zhì)得出OC⊥CH,求出∠H=30°,證出∠H=∠BAC,得出AC=CH=3,求出AH和高,由三角形面積公式即可得出答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線y=﹣ x2﹣ x+2 與其“夢想直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 , 點A的坐標為 , 點B的坐標為;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地某個季度的氣溫情況,用適當?shù)某闃臃椒◤脑摰剡@個季度中抽取30天,對每天的最高氣溫x(單位:℃)進行調(diào)查,并將所得的數(shù)據(jù)按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五組,得到如圖頻數(shù)分布直方圖.
(1)求這30天最高氣溫的平均數(shù)和中位數(shù)(各組的實際數(shù)據(jù)用該組的組中值代表);
(2)每月按30天計算,各組的實際數(shù)據(jù)用該組的組中值代表,估計該地這個季度中最高氣溫超過(1)中平均數(shù)的天數(shù);
(3)如果從最高氣溫不低于24℃的兩組內(nèi)隨機選取兩天,請你直接寫出這兩天都在氣溫最高一組內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+c的開口向上,且經(jīng)過點A(0, )
(1)若此拋物線經(jīng)過點B(2,﹣ ),且與x軸相交于點E,F(xiàn).
①填空:b=(用含a的代數(shù)式表示);
(2)若a= ,當0<x<1,拋物線上的點到x軸距離的最大值為3時,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以菱形ABCD的對角線交點O為坐標原點,AC所在的直線為x軸,已知A(﹣4,0),B(0,﹣2),M(0,4),P為折線BCD上一動點,作PE⊥y軸于點E,設(shè)點P的縱坐標為a.
(1)求BC邊所在直線的解析式;
(2)設(shè)y=MP2+OP2 , 求y關(guān)于a的函數(shù)關(guān)系式;
(3)當△OPM為直角三角形時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com