【題目】點(diǎn)DE分別是ABC的邊AB,AC的中點(diǎn).

(1)如圖1,點(diǎn)OABC內(nèi)的動(dòng)點(diǎn),點(diǎn)O,F分別是OB,OC的中點(diǎn),求證:DEFG是平行四邊形;

(2)如圖2,若BEDC于點(diǎn)O,請(qǐng)問(wèn)AO的延長(zhǎng)線經(jīng)過(guò)BC的中點(diǎn)嗎?為什么?

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

(1)由三角形中位線定理得出DEGF,DEGF,即可得出結(jié)論;

(2)由三角形的重心定理即可得出結(jié)論.

(1)D、E分別是ABC的邊AB、AC的中點(diǎn),

DEABC的中位線,

DEBC,BC2DE,

同理:GFBCBC2GF,

DEGFDEGF,

∴四邊形DEFG是平行四邊形;

(2) AO的延長(zhǎng)線經(jīng)過(guò)BC的中點(diǎn);理由如下:

BE、CDABC的中線,BEDC于點(diǎn)O,三角形的三條中線相交于一點(diǎn),

AO的延長(zhǎng)線經(jīng)過(guò)BC的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (k≠0)的圖象交于點(diǎn)A(1,3),B(m,1),與x軸交于點(diǎn)D,直線OA與反比例函數(shù)y= (k≠0)的圖象的另一支交于點(diǎn)C,過(guò)點(diǎn)B作直線l垂直于x軸,點(diǎn)E是點(diǎn)D關(guān)于直線l的對(duì)稱點(diǎn).

(1)k=;
(2)判斷點(diǎn)B,E,C是否在同一條直線上,并說(shuō)明理由;
(3)如圖2,已知點(diǎn)F在x軸正半軸上,OF= ,點(diǎn)P是反比例函數(shù)y= (k≠0)的圖象位于第一象限部分上的點(diǎn)(點(diǎn)P在點(diǎn)A的上方),∠ABP=∠EBF,則點(diǎn)P的坐標(biāo)為( , ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果兩個(gè)角的差的絕對(duì)值等于,就稱這兩個(gè)角互為反余角,其中一個(gè)角叫做另一個(gè)角的反余角,例如,,,,則互為反余角,其中的反余角,也是的反余角.

如圖為直線AB上一點(diǎn),于點(diǎn)O,于點(diǎn)O,則的反余角是______的反余角是______;

若一個(gè)角的反余角等于它的補(bǔ)角的,求這個(gè)角.

如圖2O為直線AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn)得,同時(shí)射線OP從射線OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn),當(dāng)射線OP與射線OB重合時(shí)旋轉(zhuǎn)同時(shí)停止,若設(shè)旋轉(zhuǎn)時(shí)間為t秒,求當(dāng)t為何值時(shí),互為反余角圖中所指的角均為小于平角的角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板如圖1擺放在直線MN上,在三角板OAB和三角板OCD中,,

保持三角板OCD不動(dòng),將三角板OAB繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)時(shí)間為t秒.

當(dāng)______秒時(shí),OB平分此時(shí)______;

當(dāng)三角板OAB旋轉(zhuǎn)至圖2的位置,此時(shí)有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

如圖3,若在三角板OAB開(kāi)始旋轉(zhuǎn)的同時(shí),另一個(gè)三角板OCD也繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),當(dāng)OB旋轉(zhuǎn)至射線OM上時(shí)同時(shí)停止.

當(dāng)t為何值時(shí),OB平分?

直接寫出在旋轉(zhuǎn)過(guò)程中,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC,BD交于點(diǎn)O,EAB中點(diǎn),點(diǎn)FCB的延長(zhǎng)線上,且EFBD.

(1)求證:四邊形OBFE是平行四邊形;

(2)當(dāng)線段ADBD之間滿足什么條件時(shí),四邊形OBFE是矩形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)對(duì)某種商品進(jìn)行銷售,第x天的銷售單價(jià)為m元/件,日銷售量為n件,其中m,n分別是x(1≤x≤30,且x為整數(shù))的一次函數(shù),銷售情況如表:

銷售第x天

第1天

第2天

第3天

第4天

第30天

銷售單價(jià)m(元/件)

49

48

47

46

20

日銷售量n(件)

45

50

55

60

190


(1)觀察表中數(shù)據(jù),分別直接寫出m與x,n與x的函數(shù)關(guān)系式: , ;
(2)求商場(chǎng)銷售該商品第幾天時(shí)該商品的日銷售額恰好為3600元?
(3)銷售商品的第15天為兒童節(jié),請(qǐng)問(wèn):在兒童節(jié)前(不包括兒童節(jié)當(dāng)天)銷售該商品第幾天時(shí)該商品的日銷售額最多?商場(chǎng)決定將這天該商品的日銷售額捐獻(xiàn)給兒童福利院,試求出商場(chǎng)可捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖所示放置,圖是由它抽象出的幾何圖形,B,C,E在同一條直線上,聯(lián)結(jié)DC,

請(qǐng)找出圖中的全等三角形,并給予說(shuō)明說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母;

試說(shuō)明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2

(1)畫出△A1B1C1和△A2B2C2

(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)分別為A1、A2,請(qǐng)寫出點(diǎn)A1、A2的坐標(biāo);

(3)Pa,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1,P2,請(qǐng)寫出點(diǎn)P1P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=12,AC= ,∠B=30°,則△ABC的面積是

查看答案和解析>>

同步練習(xí)冊(cè)答案