精英家教網 > 初中數學 > 題目詳情
(2012•湘潭)如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關系,并證明你的結論;
(2)求線段BD的長.
分析:(1)由平移的性質可知BE=2BC=6,DE=AC=3,故可得出BD⊥DE,由∠E=∠ACB=60°可知AC∥DE,故可得出結論;
(2)在Rt△BDE中利用勾股定理即可得出BD的長.
解答:解:(1)AC⊥BD.
∵△DCE由△ABC平移而成,
∴BE=2BC=6,DE=AC=3,∠E=∠ACB=60°,
∴DE=
1
2
BE,
∴BD⊥DE,
又∵∠E=∠ACB=60°,
∴AC∥DE,
∴BD⊥AC,
∵△ABC是等邊三角形,
∴BF是邊AC的中線,
∴BD⊥AC,BD與AC互相垂直平分;

(2)∵由(1)知,AC∥DE,BD⊥AC,
∴△BED是直角三角形,
∵BE=6,DE=3,
∴BD=
BE2-DE2
=
62-32
=3
3
點評:本題考查的是等邊三角形的性質及平移的性質,熟知圖形平移后的圖形與原圖形全等的性質是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•湘潭)如圖,在⊙O中,弦AB∥CD,若∠ABC=40°,則∠BOD=(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•湘潭)如圖,拋物線y=ax2-
32
x-2(a≠0)
的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;
(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•湘潭)如圖,某中學準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現在已備足可以砌50m長的墻的材料,試設計一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•湘潭)如圖,△ABC的一邊AB是⊙O的直徑,請你添加一個條件,使BC是⊙O的切線,你所添加的條件為
∠ABC=90°
∠ABC=90°

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•湘潭)如圖,矩形ABCD是供一輛機動車停放的車位示意圖,已知BC=2m,CD=5.4m,∠DCF=30°,請你計算車位所占的寬度EF約為多少米?(
3
≈1.73
,結果保留兩位有效數字.)

查看答案和解析>>

同步練習冊答案