(2008•義烏)如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關系及所在直線的位置關系:
(1)①猜想如圖1中線段BG、線段DE的長度關系及所在直線的位置關系;
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并選取圖2證明你的判斷;

(2)將原題中正方形改為矩形(如圖4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由;

(3)在第(2)題圖5中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.
【答案】分析:(1)四邊形ABCD是正方形推出△BCG≌△DCE.然后得出∠DOH=90°,推出BG⊥DE.
(2)依題意得出AB=a,BC=b,CG=kb,CE=ka的線段比例,然后再推出∠CDE+∠DHO=90°即可.
(3)依題意得出BE2+DG2=BD2+GE2,從而可求解.
解答:解:(1)①BG=DE,
BG⊥DE.
②BG=DE,
BG⊥DE仍然成立.
在圖(2)中證明如下
∵四邊形ABCD、四邊形CEFG都是正方形,
∴BC=CD,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE(1分),
∵在△BCG與△DCE中,
,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE.

(2)BG⊥DE成立,BG=DE不成立.
簡要說明如下:
∵四邊形ABCD、四邊形CEFG都是矩形,
且AB=a,BC=b,CG=kb,CE=ka(a≠b,k>0),
,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE.


(3)∵BG⊥DE,
∴OB2+OD2=BD2,OE2+OG2=GE2,OB2+OE2=BE2,OG2+OD2=DG2
∴BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,
又∵a=3,b=2,k=,
,

點評:解答本題要充分利用正方形的特殊性質(zhì).注意在正方形中的特殊三角形的應用,搞清楚矩形、菱形、正方形中的三角形的三邊關系,利用勾股定理求解,可有助于提高解題速度和準確率.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2008•義烏)如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關系及所在直線的位置關系:
(1)①猜想如圖1中線段BG、線段DE的長度關系及所在直線的位置關系;
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并選取圖2證明你的判斷;

(2)將原題中正方形改為矩形(如圖4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由;

(3)在第(2)題圖5中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的對稱》(03)(解析版) 題型:解答題

(2008•義烏)如圖,直角梯形紙片ABCD,AD⊥AB,AB=8,AD=CD=4,點E、F分別在線段AB、AD上,將△AEF沿EF翻折,點A的落點記為P.
(1)當AE=5,P落在線段CD上時,PD=______;
(2)當P落在直角梯形ABCD內(nèi)部時,PD的最小值等于______

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(09)(解析版) 題型:解答題

(2008•義烏)如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關系及所在直線的位置關系:
(1)①猜想如圖1中線段BG、線段DE的長度關系及所在直線的位置關系;
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并選取圖2證明你的判斷;

(2)將原題中正方形改為矩形(如圖4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由;

(3)在第(2)題圖5中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年浙江省義烏市中考數(shù)學試卷(解析版) 題型:解答題

(2008•義烏)如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關系及所在直線的位置關系:
(1)①猜想如圖1中線段BG、線段DE的長度關系及所在直線的位置關系;
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并選取圖2證明你的判斷;

(2)將原題中正方形改為矩形(如圖4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由;

(3)在第(2)題圖5中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年浙江省義烏市中考數(shù)學試卷(解析版) 題型:解答題

(2008•義烏)如圖,直角梯形紙片ABCD,AD⊥AB,AB=8,AD=CD=4,點E、F分別在線段AB、AD上,將△AEF沿EF翻折,點A的落點記為P.
(1)當AE=5,P落在線段CD上時,PD=______;
(2)當P落在直角梯形ABCD內(nèi)部時,PD的最小值等于______

查看答案和解析>>

同步練習冊答案