【題目】一次團(tuán)體操排練活動(dòng)中,

1)如圖,老師讓大家站成一個(gè)形如正方形的點(diǎn)陣,第一層每邊有三個(gè)點(diǎn),第二層每邊有五個(gè)點(diǎn),第三層每邊有七個(gè)點(diǎn),依此類(lèi)推,則第四層的總點(diǎn)數(shù)是   ;第n層(n為正整數(shù))的總點(diǎn)數(shù)是   ;

2)某班45名學(xué)生面向老師站成一列橫隊(duì).老師每次讓其中任意6名學(xué)生向后轉(zhuǎn)(不論原來(lái)方向如何),能否經(jīng)過(guò)若干次后全體學(xué)生都背向老師站立?如果能夠,請(qǐng)你設(shè)計(jì)一種方案;如果不能夠,請(qǐng)聯(lián)系有理數(shù)乘法的知識(shí)說(shuō)明理由.

【答案】132;8n;(2)不能夠,理由見(jiàn)解析

【解析】

1)觀(guān)察圖形的變化發(fā)現(xiàn)規(guī)律即可得結(jié)論;

2)根據(jù)具體問(wèn)題,在一定假設(shè)條件下找出解決問(wèn)題的數(shù)學(xué)框架,求出模型的解,并對(duì)它進(jìn)行驗(yàn)證的全過(guò)程,即為建模思想.

解:(1)觀(guān)察圖形的變化可知:

1層的總點(diǎn)數(shù)是8;

2層的總點(diǎn)數(shù)是2×5+2×316;

3層的總點(diǎn)數(shù)是2×7+2×524;

4層的總點(diǎn)數(shù)是4×832;

發(fā)現(xiàn)規(guī)律:

n層的總點(diǎn)數(shù)是8n;

故答案為32、8n

2)不能夠,理由如下:

假設(shè)面向老師站立記為“+1”,則背向老師站立為1”

原來(lái)45個(gè)“+1”,乘積為“+1”,每次改變其中的6個(gè)數(shù),

即每次運(yùn)算乘以6個(gè)1”,即乘以了“+1”,

不改變這45個(gè)數(shù)的乘積的符號(hào),始終是“+1”,

而最后要達(dá)到的目標(biāo)是45個(gè)1”,

乘積為1”,故這是不可能的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張騎車(chē)往返于甲、乙兩地,距甲地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)圖象如圖所示.

(1)小張?jiān)诼飞贤A?/span>  小時(shí),他從乙地返回時(shí)騎車(chē)的速度為   千米/時(shí);

(2)小王與小張同時(shí)出發(fā),按相同路線(xiàn)勻速前往乙地,距甲地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)關(guān)系式為y=10x+10.請(qǐng)作出此函數(shù)圖象,并利用圖象回答:小王與小張?jiān)谕局泄蚕嘤?/span>   次;

(3)請(qǐng)你計(jì)算第三次相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:關(guān)于的兩個(gè)一次二項(xiàng)式,其中任意一個(gè)式子的一次項(xiàng)系數(shù)都是另一個(gè)式子的常數(shù)項(xiàng),則稱(chēng)這兩個(gè)式子互為田家炳式”.例如,式子互為田家炳式”.

1)判斷式子______(填不是)互為田家炳式;

2)已知式子田家炳式且數(shù)、在數(shù)軸上所對(duì)應(yīng)的點(diǎn)為、.在數(shù)軸上有一點(diǎn)、兩點(diǎn)的距離的和,求點(diǎn)在數(shù)軸上所對(duì)應(yīng)的數(shù).

3)在(2)的條件下,若點(diǎn),點(diǎn)同時(shí)沿?cái)?shù)軸向正方向運(yùn)動(dòng),點(diǎn)的速度是點(diǎn)速度的2倍,且3秒后,,求點(diǎn)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校團(tuán)委為積極參與陶行知杯.全國(guó)書(shū)法大賽現(xiàn)場(chǎng)決賽,向?qū)W校學(xué)生征集書(shū)畫(huà)作品,今年3月份舉行了書(shū)畫(huà)比賽初賽,初賽成績(jī)?cè)u(píng)定為AB,CD,E五個(gè)等級(jí).該校七年級(jí)書(shū)法班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題

(1)該校七年級(jí)書(shū)法班共有 名學(xué)生;扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)扇形的圓心角等于 ,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)A等級(jí)的4名學(xué)生中有2名男生,2名女生,現(xiàn)從中任意選取2名學(xué)生參加陶行知杯.全國(guó)書(shū)法大賽現(xiàn)場(chǎng)決賽,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求出恰好選到1名男生和1名女生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過(guò)三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當(dāng)y1﹣y2=4時(shí),求m的值;

(2)如圖,過(guò)點(diǎn)B、C分別作x軸、y軸的垂線(xiàn),兩垂線(xiàn)相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請(qǐng)寫(xiě)出點(diǎn)P坐標(biāo)(不需要寫(xiě)解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BCa.作BC邊的三等分點(diǎn)C1,使得CC1BC112,過(guò)點(diǎn)C1AC的平行線(xiàn)交AB于點(diǎn)A1,過(guò)點(diǎn)A1BC的平行線(xiàn)交AC于點(diǎn)D1,作BC1邊的三等分點(diǎn)C2,使得C1C2BC212,過(guò)點(diǎn)C2AC的平行線(xiàn)交AB于點(diǎn)A2,過(guò)點(diǎn)A2BC的平行線(xiàn)交A1C1于點(diǎn)D2;如此進(jìn)行下去,則線(xiàn)段AnDn的長(zhǎng)度為(

A. aB. aC. aD. a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四邊形ABCD中,∠A=∠C90°

1)∠ABC+∠ADC  °;

2)如圖①,若DE平分∠ADC,BF平分∠ABC的外角,請(qǐng)寫(xiě)出DEBF的位置關(guān)系,并證明;

3)如圖②,若BEDE分別四等分∠ABC、∠ADC的外角(即∠CDECDN,∠CBECBM),試求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動(dòng)點(diǎn),PEAB E,PFAC F,M EF 中點(diǎn),則 AM 的最小值為(

A.1B.1.3C.1.2D.1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓上有五個(gè)點(diǎn),這五個(gè)點(diǎn)將圓分成五等份(每一份稱(chēng)為一段弧長(zhǎng)),把這五個(gè)點(diǎn)按順時(shí)針?lè)较蛞来尉幪?hào)為1,2,3,4,5,若從某一點(diǎn)開(kāi)始,沿圓周順時(shí)針?lè)较蛐凶,點(diǎn)的編號(hào)是數(shù)字幾,就走幾段弧長(zhǎng),則稱(chēng)這種走法為一次“移位”.如:小明在編號(hào)為3的點(diǎn),那么他應(yīng)走3段弧長(zhǎng),即從3451為第一次“移位”,這時(shí)他到達(dá)編號(hào)為1的點(diǎn),然后從12為第二次“移位”.若小明從編號(hào)為4的點(diǎn)開(kāi)始,第2020次“移位”后,他到達(dá)編號(hào)為______的點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案