(2007•蕪湖)已知圓P的圓心在反比例函數(shù)y=(k>1)圖象上,并與x軸相交于A、B兩點(diǎn).且始終與y軸相切于定點(diǎn)C(0,1).
(1)求經(jīng)過A、B、C三點(diǎn)的二次函數(shù)圖象的解析式;
(2)若二次函數(shù)圖象的頂點(diǎn)為D,問當(dāng)k為何值時(shí),四邊形ADBP為菱形.

【答案】分析:(1)連接PC、PA、PB,過P點(diǎn)作PH⊥x軸,垂足為H.易得PC⊥y軸,進(jìn)而可得P的坐標(biāo),在Rt△APH中,根據(jù)勾股定理可得AB點(diǎn)坐標(biāo)關(guān)于k的表達(dá)式,即可得答案;
(2)由(1)知拋物線頂點(diǎn)D坐標(biāo)為(k,1-k2);故DH=k2-1.若四邊形ADBP為菱形.則必有PH=DH;代入k,易得k=時(shí),PH=DH.故可得答案.
解答:
解:(1)連接PC、PA、PB,過P點(diǎn)作PH⊥x軸,垂足為H.(1分)
∵⊙P與y軸相切于點(diǎn)C(0,1),
∴PC⊥y軸.
∵P點(diǎn)在反比例函數(shù)的圖象上,
∴P點(diǎn)坐標(biāo)為(k,1).(2分)
∴PA=PC=k.
在Rt△APH中,AH==,
∴OA=OH-AH=k-
∴A(k-,0).(3分)
∵由⊙P交x軸于A、B兩點(diǎn),且PH⊥AB,由垂徑定理可知,PH垂直平分AB.
∴OB=OA+2AH=k-+2=k+,
∴B(k+,0).(4分)
故過A、B兩點(diǎn)的拋物線的對稱軸為PH所在的直線解析式為x=k.
可設(shè)該拋物線解析式為y=a(x-k)2+h.(5分)
又∵拋物線過C(0,1),B(k+,0),
∴得:
解得a=1,h=1-k2.(7分)
∴拋物線解析式為y=(x-k)2+1-k2.(8分)

(2)由(1)知拋物線頂點(diǎn)D坐標(biāo)為(k,1-k2
∴DH=k2-1.
若四邊形ADBP為菱形.則必有PH=DH.(10分)
∵PH=1,
∴k2-1=1.
又∵k>1,
∴k=(11分)
∴當(dāng)k取時(shí),PD與AB互相垂直平分,則四邊形ADBP為菱形.(12分)
點(diǎn)評:此題綜合考查了反比例函數(shù),正比例函數(shù)等多個(gè)知識點(diǎn).此題難度稍大,綜合性比較強(qiáng),注意對各個(gè)知識點(diǎn)的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•蕪湖)已知圓P的圓心在反比例函數(shù)y=(k>1)圖象上,并與x軸相交于A、B兩點(diǎn).且始終與y軸相切于定點(diǎn)C(0,1).
(1)求經(jīng)過A、B、C三點(diǎn)的二次函數(shù)圖象的解析式;
(2)若二次函數(shù)圖象的頂點(diǎn)為D,問當(dāng)k為何值時(shí),四邊形ADBP為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2007•蕪湖)已知圓P的圓心在反比例函數(shù)y=(k>1)圖象上,并與x軸相交于A、B兩點(diǎn).且始終與y軸相切于定點(diǎn)C(0,1).
(1)求經(jīng)過A、B、C三點(diǎn)的二次函數(shù)圖象的解析式;
(2)若二次函數(shù)圖象的頂點(diǎn)為D,問當(dāng)k為何值時(shí),四邊形ADBP為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一元二次方程》(03)(解析版) 題型:填空題

(2007•蕪湖)已知2-是一元二次方程x2-4x+c=0的一個(gè)根,則方程的另一個(gè)根是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年安徽省蕪湖市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•蕪湖)已知2-是一元二次方程x2-4x+c=0的一個(gè)根,則方程的另一個(gè)根是   

查看答案和解析>>

同步練習(xí)冊答案