若b<0,直線y=ax+b和拋物線y=ax2+bx+c在同一坐標(biāo)系中大致圖象是

[  ]

A.

B.

C.

D.

答案:C
解析:

  解析:A.由直線y=ax+b過一、二、三象限得a>0,b>0與已知條件b矛盾,故A錯.

  B.由直線y=ax+b過二、三、四象限得a<0,b<0,∴x=-<0與拋物線對稱軸在y軸右邊矛盾.故B錯.

  C.由直線y=ax+b過一、三、四象限得a>0,b<0,因此拋物線開口向上,對稱軸y=->0.在x軸正半軸了符合條件,故C正確.

  D.由直線y=ax+b過一、二、四象限,得到b<0與已知條件矛盾,所以D錯.

  ∴本題的答案應(yīng)選C.

  點評:本題主要考查二次函數(shù)的圖象性質(zhì)與一次函數(shù)的圖象及性質(zhì),考查同學(xué)的識圖能力和推理能力.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=a(x+1)(x-5)與x軸的交點為M、N.直線y=kx+b

與x軸交于P(-2,0),與y軸交于C.若A、B兩點在直線y=kx+b上,且AO=BO=,AO⊥BO.D為線段MN的中點,OH為Rt△OPC斜邊上的高.

1.OH的長度等于___________;k=___________,b=____________;

2.是否存在實數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點E,滿足以D、N、E為頂點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E點(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG<,寫出探索過程.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=a(x+1)(x-5)與x軸的交點為M、N.直線y=kx+b
與x軸交于P(-2,0),與y軸交于C.若A、B兩點在直線y=kx+b上,且AO=BO=,AO⊥BO.D為線段MN的中點,OH為Rt△OPC斜邊上的高.
【小題1】OH的長度等于___________;k=___________,b=____________;
【小題2】是否存在實數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點E,滿足以D、N、E為頂點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E點(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG<,寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市蕭山中學(xué)初三模擬考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)如圖,拋物線ya(x1)(x5)x軸的交點為M、N.直線ykxb

x軸交于P(2,0),與y軸交于C.若A、B兩點在直線ykxb上,且AO=BO=,AOBOD為線段MN的中點,OHRt△OPC斜邊上的高.
(1)OH的長度等于___________;k=___________,b=____________;
(2)是否存在實數(shù)a,使得拋物線ya(x1)(x5)上有一點E,滿足以D、N、E為頂
點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG,寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市春蕾、風(fēng)帆、大成三校九年級第一次模擬數(shù)學(xué)卷(解析版) 題型:解答題

如圖,拋物線y=a(x+1)(x-5)與x軸的交點為M、N.直線y=kx+b

與x軸交于P(-2,0),與y軸交于C.若A、B兩點在直線y=kx+b上,且AO=BO=,AO⊥BO.D為線段MN的中點,OH為Rt△OPC斜邊上的高.

1.OH的長度等于___________;k=___________,b=____________;

2.是否存在實數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點E,滿足以D、N、E為頂點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E點(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG<,寫出探索過程.

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市初三模擬考試數(shù)學(xué)卷 題型:選擇題

(本題滿分12分)如圖,拋物線ya(x1)(x5)x軸的交點為M、N.直線ykxb

x軸交于P(20),與y軸交于C.若AB兩點在直線ykxb上,且AO=BO=,AOBOD為線段MN的中點,OHRt△OPC斜邊上的高.

(1)OH的長度等于___________;k=___________,b=____________;

(2)是否存在實數(shù)a,使得拋物線ya(x1)(x5)上有一點E,滿足以D、N、E為頂

點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG,寫出探索過程.

 

查看答案和解析>>

同步練習(xí)冊答案