1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
a-b |
2 |
a-b |
2 |
m-2n |
4 |
m-2n |
4 |
科目:初中數(shù)學 來源:2011年北京市朝陽區(qū)九年級綜合練習(二)數(shù)學卷 題型:解答題
閱讀材料并解答問題
如圖①,以Rt△ABC的直角邊AB、AC為邊分別向外作正方形ABDE和正方形ACFG,連結(jié)EG,可以得出結(jié)論△ABC的面積與△AEG的面積相等.
(1)在圖①中的△ABC的直角邊AB上任取一點H,連結(jié)CH,以BH、HC為邊分別向外作正方形HBDE和正方形HCFG,連結(jié)EG,得到圖②,則△HBC的面積與△HEG的面積的大小關系為 .
(2)如圖③,若圖形總面積是a,其中五個正方形的面積和是b,則圖中陰影部分的面積是 .
(3)如圖④,點A、B、C、D、E都在同一直線上,四邊形X、Y、Z都是正方形,若圖形總面積是m,正方形Y的面積是n,則圖中陰影部分的面積是 .
圖① 圖② 圖③ 圖④
查看答案和解析>>
科目:初中數(shù)學 來源:2011年北京市朝陽區(qū)九年級綜合練習(二)數(shù)學卷 題型:解答題
閱讀材料并解答問題
如圖①,以Rt△ABC的直角邊AB、AC為邊分別向外作正方形ABDE和正方形ACFG,連結(jié)EG,可以得出結(jié)論△ABC的面積與△AEG的面積相等.
(1)在圖①中的△ABC的直角邊AB上任取一點H,連結(jié)CH,以BH、HC為邊分別向外作正方形HBDE和正方形HCFG,連結(jié)EG,得到圖②,則△HBC的面積與△HEG的面積的大小關系為 .
(2)如圖③,若圖形總面積是a,其中五個正方形的面積和是b,則圖中陰影部分的面積是 .
(3)如圖④,點A、B、C、D、E都在同一直線上,四邊形X、Y、Z都是正方形,若圖形總面積是m,正方形Y的面積是n,則圖中陰影部分的面積是 .
圖① 圖② 圖③ 圖④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2011年北京市朝陽區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com