精英家教網 > 初中數學 > 題目詳情
6、已知P是△ABC內一點,連接PA、PB、PC,把△ABC的面積三等分,則P點一定是(  )
分析:根據三角形的面積公式,知點B和點C到AP的距離相等,利用全等三角形就可證明AP的延長線和BC的交點即為BC的中點,同理可證明BP、CP也是三角形的中線的一部分.
解答:解:延長AP交BC于O,作BE⊥AP于E,作CF⊥AP于F.
∵△ABP的面積=△ACP的面積,
∴BE=CF.
根據AAS可以證明BO=CO.
同理可以證明點P即為三角形的三條中線的交點.
故選D.
點評:此題綜合運用了三角形的面積公式、全等三角形的判定和性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知AB是半徑為1的圓O的一條弦,且AB=a<1,以AB為一邊在圓O內作正△ABC,點D為圓O上不同于點A的一點,且DB=AB=a,DC的延長線交圓O于點E,則AE的長為( �。�
A、
5
2
a
B、1
C、
3
2
D、a
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數學 來源: 題型:

24、如圖,直線CD經過線段AB的一個端點B,∠ABC=50°,點P為直線CD上一點;已知△PAB是以AB為底邊的等腰三角形,⊙O是以AB為直徑的圓.
(1)用圓規(guī)和直尺在圖中找出點P,并作出⊙O;
(2)用圓規(guī)和直尺過點P作出⊙O的一條切線;
(3)若將將條件“∠ABC=50°”改為“∠ABC=α(0°<α<90°)”討論當α在不同范圍內時過點P能作⊙O的切線的條數.(第(1)、(2)小題保留作圖痕跡,不必寫作法和證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•金華模擬)已知:圖1為一銳角是30°的直角三角尺,其邊框為透明塑料制成(內、外直角三角形對應邊互相平行且三處所示寬度相等).
操作:將三角尺移向直徑為4cm的⊙O,它的內Rt△ABC的斜邊AB恰好等于⊙O的直徑,它的外Rt△A′B′C′的直角邊A′C′恰好與⊙O相切(如圖2).
思考:
(1)求直角三角尺邊框的寬.
(2)求證:∠BB′C′+∠CC′B′=75°.
(3)求邊B′C′的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知AB是半徑為1的圓O的一條弦,且AB=a<1,以AB為一邊在圓O內作正三角形ABC,點D為圓O上不同于點A的一點,且DB=AB=a,DC的延長線交圓O于點E,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知點O是△ABC內一點,且點O到△ABC三邊的距離相等,則點O是△ABC( �。�

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹