【題目】如圖1,為等腰三角形,,點在線段上(不與重合),以為腰長作等腰直角,于.
(1)求證:;
(2)連接交于,若,求的值.
(3)如圖2,過作于的延長線于點,過點作交于,連接,當點在線段上運動時(不與重合),式子的值會變化嗎?若不變,求出該值;若變化,請說明理由..
【答案】(1)證明見詳解;(2)2;(3)式子值不變,理由見詳解.
【解析】
(1)根據題目中的信息可以得到AQ=AP,∠QEA與∠ABP之間的關系,∠QAE與∠APB之間的關系,從而可以解答本題;
(2)由第一問中的兩個三角形全等,可以得到各邊之間的關系,然后根據題目中的信息找到PC與MB的關系,從而可以解答本題;
(3)作合適的輔助線,構造直角三角形,通過三角形的全等可以找到所求問題需要的邊之間的關系,從而可以解答本題.
(1)證明:∵△ACB為等腰三角形,∠ABC=90°,點P在線段BC上(不與B,C重合),以AP為腰長作等腰直角△PAQ,QE⊥AB于E.
∴AP=AQ,∠ABQ=∠QEA=90°,∠QAE+∠BAP=∠BAP+∠APB=90°,
∴∠QAE=∠APB,
在△PAB和△AQE中,
∴△PAB≌△AQE(AAS);
(2) ∵△PAB≌△AQE,
∴AE=PB,
∵AB=CB,
∴QE=CB.
在△QEM和△CBM中,
∴△QEM≌△CBM(AAS),
∴ME=MB,
∵AB=CB,AE=PB,PC=2PB,
∴BE=PC,
∵PC=2PB,
∴PC=2MB,
∴
(3)式子的值不會變化.
如下圖所示:作HA⊥AC交QF于點H,
∵QA⊥AP,HA⊥AC,AP⊥PD,
∴∠QAH+∠HAP=∠HAP+∠PAD=90°,∠AQH=∠APD=90°,
∴∠QAH=∠PAD,
∵△PAQ為等腰直角三角形,
∴AQ=AP,
在△AQH和△APD中,
∴△AQH≌△APD(ASA),
∴AH=AD,QH=PD,
∵HA⊥AC,∠BAC=45°,
∴∠HAF=∠DAF,
在△AHF和△ADF中,
∴△AHF≌△ADF(SAS),
∴HF=DF,
∴
科目:初中數學 來源: 題型:
【題目】已知在四邊形ABCD中,∠A=∠C=90°.
(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補角,請寫出BE與DF的位置關系,并證明.
(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補角,判斷DE與BF位置關系并證明.
(3)如圖3,若BE、DE分別六等分∠ABC、∠ADC的鄰補角(即∠CBE=∠CBM,∠CDE=∠CDN),則∠E= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一張長方形紙片寬AB=DC=8 cm,長BC=AD=10 cm,∠B=∠C=∠D=∠BAD=90°.現將紙片折疊,使頂點D落在BC邊上的點F處(折痕為AE),求EC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知k為非負實數,關于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.
(1)試證:前一個方程必有兩個非負實數根;
(2)當k取何值時,上述兩個方程有一個相同的實數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關系,并說明理由.
(2)過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:∠AOD=150°,OB,OM,ON是∠AOD內的射線.
(1)如圖1,若OM平分∠AOB,ON平分∠BOD.當射線OB繞點O在∠AOD內旋轉時,
∠MON= °;
(2)OC也是∠AOD內的射線,如圖2,若∠BOC=m°,OM平分∠AOC,ON平分∠BOD,
求∠MON的大小(用含m的式子表示);
(3)在(2)的條件下,若m=20,∠AOB=10°,當∠BOC在∠AOD內部繞O點以每秒2°的速度逆時針旋轉t秒,如圖3,若3∠AOM=2∠DON時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=80°,BC=12,AB的垂直平分線交BC邊于點E,AC的垂直平分線交BC邊于點N,NE=6,則∠NAE=______°,△EAN的周長=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com