【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為非負(fù)整數(shù),且該方程的根都是無理數(shù),求m的值.
【答案】(1)m<2;(2)m=1.
【解析】
(1)利用方程有兩個(gè)不相等的實(shí)數(shù)根,得△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;
(2)先利用m的范圍得到m=0或m=1,再分別求出m=0和m=1時(shí)方程的根,然后根據(jù)根的情況確定滿足條件的m的值.
(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+16.
∵方程有兩個(gè)不相等的實(shí)數(shù)根,
∴△>0.
即﹣8m+16>0.
解得 m<2;
(2)∵m<2,且 m 為非負(fù)整數(shù),
∴m=0 或 m=1,
當(dāng) m=0 時(shí),原方程為 x2-2x-3=0,
解得 x1=3,x2=﹣1(不符合題意舍去), 當(dāng) m=1 時(shí),原方程為 x2﹣2=0,
解得 x1=,x2=﹣ ,
綜上所述,m=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F.
(1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),AD與BC交于點(diǎn)H.
①求證△ADB≌△AOB;
②求點(diǎn)H的坐標(biāo).
(3)記K為矩形AOBC對(duì)角線的交點(diǎn),S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上,若四邊形EGFH是菱形,則AE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2002年8月在北京召開的國際數(shù)學(xué)家大會(huì)會(huì)標(biāo)取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長直角邊為b,那么(a+b)2的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,點(diǎn)A、B、C、D都在格點(diǎn)上.
(1)線段AB的長是______;
(2)在圖中畫出一條線段EF,使EF的長為,并判斷AB、CD、EF三條線段的長能否成為一個(gè)直角三角形三邊的長?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,點(diǎn)E、F、G、H分別在AB、BC、CD、DA上,且AE=BF=CG=DH,
(1)四邊形EFGH是正方形嗎?為什么?
(2)若正方形ABCD的邊長為4cm,且AE=BF=CG=DH=3cm,請求出四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,AB∥DC,連接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分線相交于點(diǎn)F,若∠ADC=110°,則∠F的度數(shù)為( 。
A. 115° B. 110° C. 105° D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】節(jié)日里,兄弟兩人在60米的跑道上進(jìn)行短距離比賽,兩人從出發(fā)點(diǎn)同時(shí)起跑,哥哥到達(dá)終點(diǎn)時(shí),弟弟離終點(diǎn)還差12米.
(1)若哥哥的速度為10米/秒,
①求弟弟的速度;
②如果兩人重新開始比賽,哥哥從起點(diǎn)向后退10米,兄弟同時(shí)起跑,兩人能否同時(shí)到達(dá)終點(diǎn)?若能,請求出兩人到達(dá)終點(diǎn)的時(shí)間;若不能,請說明誰先到達(dá)終點(diǎn).
(2)若哥哥的速度為m米/秒,
①弟弟的速度為________米/秒(用含m的代數(shù)式表示);
②如果兩人想同時(shí)到達(dá)終點(diǎn),哥哥應(yīng)向后退多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)若∠B=30°,AB=8,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com