(2013•臨沂)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.
分析:(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案;
(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質得出CD=AD,根據(jù)菱形的判定推出即可.
解答:(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,AD是BC邊上的中線,
∴AE=DE,BD=CD,
在△AFE和△DBE中
∠AFE=∠DBE
∠FEA=∠BED
AE=DE

∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC.

(2)四邊形ADCF是菱形,
證明:AF∥BC,AF=DC,
∴四邊形ADCF是平行四邊形,
∵AC⊥AB,AD是斜邊BC的中線,
∴AD=DC,
∴平行四邊形ADCF是菱形.
點評:本題考查了全等三角形的性質和判定,平行四邊形的判定,菱形的判定的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•臨沂)如圖,已知AB∥CD,∠2=135°,則∠1的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•臨沂)如圖是一個幾何體的三視圖,則這個幾何體的側面積是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•臨沂)如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結論不一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•臨沂)如圖,拋物線經過A(-1,0),B(5,0),C(0,-
52
)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案