【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A(1,a)、B兩點.

(1)求反比例函數(shù)的表達(dá)式及點B的坐標(biāo);

(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)及PAB的面積.

【答案】(1),B(3,1);(2)P,0),

【解析】

試題分析:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,即可得出a,再把點A坐標(biāo)代入反比例函數(shù),即可得出k,兩個函數(shù)解析式聯(lián)立求得點B坐標(biāo);

(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,求出直線AD的解析式,令y=0,即可得出點P坐標(biāo).

試題解析:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),點A(1,3)代入反比例函數(shù),得k=3,∴反比例函數(shù)的表達(dá)式,兩個函數(shù)解析式聯(lián)立列方程組得,解得,∴點B坐標(biāo)(3,1);

(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,∴D(3,﹣1),設(shè)直線AD的解析式為y=mx+n,把A,D兩點代入得,,解得m=﹣2,n=5,∴直線AD的解析式為y=﹣2x+5,令y=0,得x=,∴點P坐標(biāo)(,0),S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的三邊分別為a、b、c,且(a-b2+a2+b2-c22=0,則三角形的形狀為————————————————

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:菱形ABCD的兩條對角線AC,BD交于點O,BE∥AC,CE∥BD.
(1)若AC=8,BD=6,求AB的長;
(2)求證:四邊形OBEC為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支持國家南水北調(diào)工程建設(shè),小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場調(diào)查得知,種植草莓不超過20畝時,所得利潤y(元)與種植面積m(畝)滿足關(guān)系式y(tǒng)=1500m;超過20畝時,y=1380m+2400.而當(dāng)種植櫻桃的面積不超過15畝時,每畝可獲得利潤1800元;超過15畝時,每畝獲得利潤z(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)中的一種).

(1)設(shè)小王家種植x畝櫻桃所獲得的利潤為P元,直接寫出P關(guān)于x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如果小王家計劃承包40畝荒山種植草莓和櫻桃,當(dāng)種植櫻桃面積x(畝)滿足0<x<20時,求小王家總共獲得的利潤w(元)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(m>0)交y軸于點C,CA⊥y軸,交拋物線于點A,點B在拋物線上,且在第一象限內(nèi),BE⊥y軸,交y軸于點E,交AO的延長線于點D,BE=2AC.

(1)用含m的代數(shù)式表示BE的長.

(2)當(dāng)m=時,判斷點D是否落在拋物線上,并說明理由.

(3)若AG∥y軸,交OB于點F,交BD于點G.

①若△DOE與△BGF的面積相等,求m的值.

②連結(jié)AE,交OB于點M,若△AMF與△BGF的面積相等,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】n邊形的內(nèi)角和是720°,則n的值是(  )

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示數(shù) , , , , 。并把這些數(shù)用“<”連接。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰是個數(shù)學(xué)愛好者,他發(fā)現(xiàn)從1開始,連續(xù)幾個奇數(shù)相加,和的變化規(guī)律如右表所示:

加數(shù)個數(shù)

連續(xù)奇數(shù)的和S

1

1=

2

1+3=22

3

1+3+5=32

4

1+3+5+7=42

5

1+3+5+7+9=52

n


(1)如果n=7,則S的值為
(2)求1+3+5+7+…+199的值;
(3)求13+15+17+…+79的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
(1)小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=
問題遷移:如圖3,AD∥BC,點P在射線OM上運動,∠ADP=∠α,∠BCP=∠β.

(2)當(dāng)點P在A、B兩點之間運動時,∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由.
(3)如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案