如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長(zhǎng)為8cm,則正方形a、b、c、d面積的和是    cm2
【答案】分析:根據(jù)題意可得,最大的正方形的面積為S=Sa+Sb+Sc+Sd
解答:解:根據(jù)勾股定理的幾何意義,知
a2+b2=e2,c2+d2=f2,e2+f2=g2,
∴a2+b2+c2+d2=g2,
∴最大的正方形的面積為S=Sa+Sb+Sc+Sd=(8×8)cm2=64cm2
故答案是64.
點(diǎn)評(píng):本題考查了勾股定理.勾股定理包含幾何與數(shù)論兩個(gè)方面,幾何方面,一個(gè)直角三角形的斜邊的平方等于另外兩邊的平方和.這里邊的平方的幾何意義就是以該邊為邊的正方形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖所示的圖形中,四邊形CDEF是正方形,則x的值為
40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

1、在如圖所示的圖形中是正方體的展開圖的有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示的圖形中,不是軸對(duì)稱的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面積和是49cm2,則其中最大的正方形S的邊長(zhǎng)為
7
7
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

按如圖所示的規(guī)律用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)矩形地面,請(qǐng)觀察下列圖形,并解答下面問題:
作業(yè)寶
(1)將下表填寫完整

圖形編號(hào)(1)(2)(3)(4)  …
黑色瓷磚的塊數(shù)101418______  …
白色瓷磚的塊數(shù)2612______  …

(2)第(n)個(gè)圖形中,共有黑色瓷磚______塊,共有白色瓷磚______塊;(用含n的代數(shù)式表示,答案直接寫在題中橫線上);
(3)如果每塊黑色瓷磚12元每塊白瓷磚10元,求購(gòu)買鋪設(shè)第(8)個(gè)圖形所需瓷磚的費(fèi)用;
(4)是否存在第(n)個(gè)圖形,該圖形所需白、黑瓷磚的總數(shù)為18325塊?若存在,求出該圖形的編號(hào)n;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案