如圖,四邊形ABCD是平行四邊形,過(guò)點(diǎn)A、C、D作拋物線y=ax2+bx+c(a≠0),與x軸的另一交點(diǎn)為E,連結(jié)CE,點(diǎn)A、B、D的坐標(biāo)分別為(-2,0)、(3,0)、(0,4).
(1)求拋物線的解析式;
(2)已知拋物線的對(duì)稱軸l交x軸于點(diǎn)F,交線段CD于點(diǎn)K,點(diǎn)M、N分別是直線l和x軸上的動(dòng)點(diǎn),連結(jié)MN,當(dāng)線段MN恰好被BC垂直平分時(shí),求點(diǎn)N的坐標(biāo);
(3)在滿足(2)的條件下,過(guò)點(diǎn)M作一條直線,使之將四邊形AECD的面積分為3:4的兩部分,求出該直線的解析式.

【答案】分析:(1)根據(jù)平行四邊形的性質(zhì)可求點(diǎn)C的坐標(biāo),由待定系數(shù)法即可求出拋物線的解析式;
(2)連結(jié)BD交對(duì)稱軸于G,過(guò)G作GN⊥BC于H,交x軸于N,根據(jù)待定系數(shù)法即可求出直線BD的解析式,根據(jù)拋物線對(duì)稱軸公式可求對(duì)稱軸,由此即可求出點(diǎn)N的坐標(biāo);
(3)過(guò)點(diǎn)M作直線交x軸于點(diǎn)P1,分點(diǎn)P在對(duì)稱軸的左側(cè),點(diǎn)P在對(duì)稱軸的右側(cè),兩種情況討論即可求出直線的解析式.
解答:解:(1)∵點(diǎn)A、B、D的坐標(biāo)分別為(-2,0)、(3,0)、(0,4),且四邊形ABCD是平行四邊形,
∴AB=CD=5,
∴點(diǎn)C的坐標(biāo)為(5,4),
∵過(guò)點(diǎn)A、C、D作拋物線y=ax2+bx+c(a≠0),
,
解得
故拋物線的解析式為y=-x2+x+4.

(2)連結(jié)BD交對(duì)稱軸于G,
在Rt△OBD中,易求BD=5,
∴CD=BD,則∠DCB=∠DBC,
又∵∠DCB=∠CBE,
∴∠DBC=∠CBE,
過(guò)G作GN⊥BC于H,交x軸于N,
易證GH=HN,
∴點(diǎn)G與點(diǎn)M重合,
故直線BD的解析式y(tǒng)=-x+4    
根據(jù)拋物線可知對(duì)稱軸方程為x=,
則點(diǎn)M的坐標(biāo)為(),即GF=,BF=,
∴BM==,
又∵M(jìn)N被BC垂直平分,
∴BM=BN=,
∴點(diǎn)N的坐標(biāo)為(,0);

(3)過(guò)點(diǎn)M作直線交x軸于點(diǎn)P1,
易求四邊形AECD的面積為28,四邊形ABCD的面積為20,
由“四邊形AECD的面積分為3:4”可知直線P1M必與線段CD相交,
設(shè)交點(diǎn)為Q1,四邊形AP1Q1D的面積為S1,四邊形P1ECQ1的面積為S2,點(diǎn)P1的坐標(biāo)為(a,0),
假設(shè)點(diǎn)P在對(duì)稱軸的左側(cè),則P1F=-a,P1E=7-a,
由△MKQ1∽△MFP1,得=,
易求Q1K=5P1F=5(-a),
∴CQ1=-5(-a)=5a-10,
∴S2=(5a-10+7-a)×4=28×,
解得:a=,
根據(jù)P1,0),M(,)可求直線P1M的解析式為y=x-6,
若點(diǎn)P在對(duì)稱軸的右側(cè),則直線P2M的解析式為y=-x+
點(diǎn)評(píng):考查了二次函數(shù)綜合題,涉及的知識(shí)點(diǎn)有:平行四邊形的性質(zhì),待定系數(shù)法求拋物線的解析式,待定系數(shù)法求直線的解析式,拋物線對(duì)稱軸公式,分類思想的運(yùn)用,綜合性較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案