如圖,拋物線(xiàn)y=ax2+bx(a>0)與反比例函數(shù)的圖象相交于點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B(t,q)在第三象限內(nèi),且△AOB的面積為3(O為坐標(biāo)原點(diǎn)).
(1)求反比例函數(shù)的解析式;
(2)用含t的代數(shù)式表示直線(xiàn)AB的解析式;
(3)求拋物線(xiàn)的解析式;
(4)過(guò)拋物線(xiàn)上點(diǎn)A作直線(xiàn)AC∥x軸,交拋物線(xiàn)于另一點(diǎn)C,把△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,請(qǐng)?jiān)趫D②中畫(huà)出旋轉(zhuǎn)后的三角形,并直接寫(xiě)出所有滿(mǎn)足△EOC∽△AOB的點(diǎn)E的坐標(biāo).

【答案】分析:(1)將點(diǎn)A(1,4)代入雙曲線(xiàn),求得k即可;
(2)設(shè)點(diǎn)B(t,),t<0,AB所在直線(xiàn)的函數(shù)表達(dá)式為y=mx+n,將點(diǎn)A、B代入,列出方程組,從而得出直線(xiàn)AB的解析式;
(3)可表示出直線(xiàn)AB與y軸的交點(diǎn)坐標(biāo),根據(jù)△AOB的面積為3,得2t2+3t-2=0,則求出點(diǎn)B的坐標(biāo),將點(diǎn)A,B代入拋物線(xiàn)y=ax2+bx,求出a、b即可;
(4)畫(huà)出圖形,可得出點(diǎn)E的坐標(biāo)有兩個(gè).
解答:解:(1)因?yàn)辄c(diǎn)A(1,4)在雙曲線(xiàn)上,
所以k=4.故雙曲線(xiàn)的函數(shù)表達(dá)式為.(1分)

(2)設(shè)點(diǎn)B(t,),t<0,AB所在直線(xiàn)的函數(shù)表達(dá)式為y=mx+n,
則有,
解得,
直線(xiàn)AB的解析式為y=-x+;(3分)

(3)直線(xiàn)AB與y軸的交點(diǎn)坐標(biāo)為,
,
整理得2t2+3t-2=0,
解得t=-2,或t=(舍去).
所以點(diǎn)B的坐標(biāo)為(-2,-2).
因?yàn)辄c(diǎn)A,B都在拋物線(xiàn)y=ax2+bx(a>0)上,
所以,
解得
所以?huà)佄锞(xiàn)的解析式為y=x2+3x;(4分)

(4)畫(huà)出圖形(2分)
點(diǎn)E的坐標(biāo)是(8,-2)或(2,-8).(2分)
點(diǎn)評(píng):本題是一道二次函數(shù)的綜合題,考查了用待定系數(shù)法求二次函數(shù)的關(guān)系式,一次函數(shù)的關(guān)系式,是中考?jí)狠S題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,直線(xiàn)y=ax+b與拋物線(xiàn)y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線(xiàn)y2=ax2-ax-1相交于A(yíng),B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線(xiàn)上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線(xiàn)的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線(xiàn)y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線(xiàn)上,矩形面積為12,
(1)求該拋物線(xiàn)的對(duì)稱(chēng)軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線(xiàn)段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線(xiàn)解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線(xiàn)y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線(xiàn)的解析式;
(2)M是線(xiàn)段OB上一動(dòng)點(diǎn),N是線(xiàn)段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線(xiàn)與該拋物線(xiàn)交于點(diǎn)P,與線(xiàn)段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問(wèn):是否存在直線(xiàn)l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案