【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最大值為,則k的值為( 。
A. B. C. D.
【答案】C
【解析】
如圖,連接BP,由反比例函數(shù)的對稱性質(zhì)以及三角形中位線定理可得OQ=BP,再根據(jù)OQ的最大值從而可確定出BP長的最大值,由題意可知當(dāng)BP過圓心C時,BP最長,過B作BD⊥x軸于D,繼而根據(jù)正比例函數(shù)的性質(zhì)以及勾股定理可求得點B坐標(biāo),再根據(jù)點B在反比例函數(shù)y=(k>0)的圖象上,利用待定系數(shù)法即可求出k的值.
如圖,連接BP,
由對稱性得:OA=OB,
∵Q是AP的中點,
∴OQ=BP,
∵OQ長的最大值為,
∴BP長的最大值為×2=3,
如圖,當(dāng)BP過圓心C時,BP最長,過B作BD⊥x軸于D,
∵CP=1,
∴BC=2,
∵B在直線y=2x上,
設(shè)B(t,2t),則CD=t﹣(﹣2)=t+2,BD=﹣2t,
在Rt△BCD中,由勾股定理得: BC2=CD2+BD2,
∴22=(t+2)2+(﹣2t)2,
t=0(舍)或t=﹣,
∴B(﹣,﹣),
∵點B在反比例函數(shù)y=(k>0)的圖象上,
∴k=﹣×(-)=,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為點D,點E,BE、CD相交于點O.∠1=∠2,則圖中全等三角形共有( )
A. 4對B. 3對C. 2對D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根
據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計圖中,m= ,n= ;
(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線EF∥GH,點B、A分別在直線EF、GH上,連接AB,在AB左側(cè)作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直線BD平分∠FBC交直線GH于D
(1) 若點C恰在EF上,如圖1,則∠DBA=_________
(2) 將A點向左移動,其它條件不變,如圖2,則(1)中的結(jié)論還成立嗎?若成立,證明你的結(jié)論;若不成立,說明你的理由
(3) 若將題目條件“∠ACB=90°”,改為:“∠ACB=120°”,其它條件不變,那么∠DBA=_________(直接寫出結(jié)果,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點A逆時針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )
A. 70° B. 35° C. 40° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生的身高如下(單位:cm):
160 163 152 161 167 154 158 171 156 168
178 151 156 154 165 160 168 155 162 173
158 167 157 153 164 172 153 159 154 155
169 163 158 150 177 155 166 161 159 164
171 154 157 165 152 167 157 162 155 160
(1)小麗用簡單隨機(jī)抽樣的方法從這50個數(shù)據(jù)中抽取一個容量為5的樣本:161,155,174,163,152,請你計算小麗所抽取的這個樣本的平均數(shù);
(2)小麗將這50個數(shù)據(jù)按身高相差4cm分組,并制作了如下的表格:
身高 | 頻數(shù) | 頻率 |
147.5~151.5 |
| 0.06 |
151.5~155.5 |
|
|
155.5~159.5 | 11 | m |
159.5~163.5 |
| 0.18 |
163.5~167.5 | 8 | 0.16 |
167.5~171.5 | 4 |
|
171.5~175.5 | n | 0.06 |
175.5~179.5 | 2 |
|
合計 | 50 | 1 |
①m= ,n= ;
②這50名學(xué)生身高的中位數(shù)落在哪個身高段內(nèi)?身高在哪一段的學(xué)生數(shù)最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,直線l1:與x軸交于點A,與y軸交于點B,且點C的坐標(biāo)為(4,-4).
(1)點A的坐標(biāo)為 ,點B的坐標(biāo)為 ;(用含b的式子表示)
(2)當(dāng)b=4時,如圖所示,連接AC,BC,判斷△ABC的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意一點 P 和線段 a.若過點 P 向線段 a 所在直線作垂線,若垂足落在線段 a 上,則稱點 P 為線段a 的內(nèi)垂點.在平面直角坐標(biāo)系 xOy 中,已知點 A(-1,0),B(2,0 ) ,C(0,2).
(1)在點 M(1,0),N(3,2),P(-1,-3)中,是線段 AB 的內(nèi)垂點的是 ;
(2)已知點 D(-3,2),E(-3,4).在圖中畫出區(qū)域并用陰影表示,使區(qū)域內(nèi)的每個點均為 Rt△CDE三邊的內(nèi)垂點;
(3)已知直線 m 與 x 軸交于點 B,與 y 軸交于點 C,將直線 m 沿 y 軸平移 3 個單位長度得到直線 n . 若存在點 Q,使線段 BQ 的內(nèi)垂點形成的區(qū)域恰好是直線 m 和 n 之間的區(qū)域(包括邊界),直接寫出點 Q 的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com