如圖,在四邊形ABCD中,若∠B=90°,BC=15,CD=7,DA=24,AB=20,則∠A+∠C=(  )
分析:連接AC,在RT△ABC中,求出AC的長度,然后根據(jù)勾股定理的逆定理可得出△ADC為直角三角形,根據(jù)四邊形的內(nèi)角和為360°可得出∠A+∠C的度數(shù).
解答:解:連接AC,

在RT△ABC中,AC2=AB2+BC2=625,
又∵AD2=576,DC2=49,
∴AC2=AD2+DC2
∴△ADC為直角三角形,即∠D=90°,
故可得∠A+∠C=360°-(90°+90°)=180°.
故選B.
點評:此題考查了勾股定理及勾股定理的逆定理,求出AC2,判斷出△ADC是直角三角形是解答本題的關(guān)鍵,另外要掌握四邊形的內(nèi)角和為360°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案