【題目】如圖,已知在ABCADE中,∠BAC=DAE=90°,AB=AC,AD=AE,點CD,E三點在同一條直線上,連接BDBE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

如圖:
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,

,

∴△ABD≌△ACE(SAS),
∴BD=CE,

∴①正確;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,

∴②正確;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,

∴③正確;

④∵∠BAC=∠DAE=90°,∠BAC+∠DAE+BAE+∠DAC=360°,

∴∠BAE+∠DAC=180°,正確.

所以①②③④都正確,共計4.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,則∠AFB=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點DBC的中點,點E△ABC內(nèi)一點,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,則圖中陰影部分的面積等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點向右平移個單位到點,再將點繞坐標(biāo)原點順時針旋轉(zhuǎn)到點.直接寫出點,的坐標(biāo);23.

在平面直角坐標(biāo)系中,將第二象限內(nèi)的點向右平移個單位到第一象限點,再將點繞坐標(biāo)原點順時針旋轉(zhuǎn)到點,直接寫出點,的坐標(biāo);

在平面直角坐標(biāo)系中.將點沿水平方向平移個單位到點,再將點繞坐標(biāo)原點順時針旋轉(zhuǎn)到點,直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、CDB的平分線BE、DF分別交邊AD、BC于點E、F.

(1)求證:四邊形BEDF為平行四邊形;

(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.

(3)在(2)的條件下,當(dāng)AE=3時,求四邊形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為邊在AD的右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想:如圖(1),當(dāng)點D在線段BC上時,

①BC與CF的位置關(guān)系是:   ;

②BC、CD、CF之間的數(shù)量關(guān)系為:   (將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考:如圖(2),當(dāng)點D在線段CB的延長線上時,上述①、②中的結(jié)論是否仍然成立?若成立,請給予證明,若不成立,請你寫出正確結(jié)論再給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AB=AC,直線MN經(jīng)過點A,過點BBDMND,過CCEMNE.

(1)求證:ABD≌△CAE;

(2)若BD=12cm,DE=20cm,求CE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,ABC的高CD與角平分線AE相交點F,過點CCHAEG,交ABH.

(1)直接寫出∠CFE的度數(shù)________;

(2)求證:CF=BH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達(dá)蜂蜜的最

短距離為 cm.

查看答案和解析>>

同步練習(xí)冊答案