(-x)7·x4=________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+bx+c的圖像與x軸的兩個交點的橫坐標分別為x1、x2,一元二次方程x2+b2x+20=0的兩實根為x3、x4,且x2-x3=x1-x4=3,求二次函數(shù)的解析式,并寫出頂點坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+bx+c的圖像與x軸的兩個交點的橫坐標分別為x1、x2,一元二次方程x2+b2x+20=0的兩實根為x3、x4,且x2-x3=x1-x4=3,求二次函數(shù)的解析式,并寫出頂點坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+bx+c的圖像與x軸的兩個交點的橫坐標分別為x1、x2,一元二次方程x2+b2x+20=0的兩實根為x3、x4,且x2-x3=x1-x4=3,求二次函數(shù)的解析式,并寫出頂點坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年山東省無棣縣九年級上學期期中考試數(shù)學卷 題型:解答題

(10分)閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中數(shù)學 來源:2011界遼寧省錦州市初三第一學期期中考試數(shù)學試題(一) 題型:解答題

已知二次函數(shù)y=x2+bx+c的圖像與x軸的兩個交點的橫坐標分別為x1、x2,一元二次方程x2+b2x+20=0的兩實根為x3、x4,且x2-x3=x1-x4=3,求二次函數(shù)的解析式,并寫出頂點坐標。

 

查看答案和解析>>

同步練習冊答案